Skip to main content

Weighted Competitive-Collaborative Representation Based Classifier for Imbalanced Data Classification

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13605))

Included in the following conference series:

Abstract

Competitive-collaborative representation based classification (CCRC) has been widely used in pattern recognition and machine learning due to its simplicity, effectiveness, and low complexity. However, its performance is highly dependent on the data distribution. When addressing imbalanced classification issue, its classification results usually tend towards the majority classes. To solve this deficiency, a class weight learning algorithm is introduced into the framework of CCRC for imbalanced classification. The weight of each class is adaptively generated according to the representation ability of each class of training samples, in which the minority classes can be given larger weights. Our proposed model is solved with a closed-form solution and inherits the efficiency property of CCRC. Extensive experimental results show that our model outperforms the commonly used imbalanced classification methods.

Supported by the National Natural Science Foundation of China under Grant 62106233 and 62106068, by the Science and Technology Research Project of Henan Province under Grant 222102210058, 222102210027, and 222102210219, and by the Grant KFJJ2020104, 2019BS032, 2020BSJJ027, and 202210463023, 202210463024.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barua, S., Islam, M.M., Yao, X., Murase, K.: MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26(2), 405–425 (2013)

    Article  Google Scholar 

  2. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  3. Cao, P., Liu, X., Zhang, J., Zhao, D., Huang, M., Zaiane, O.: l(2,1) norm regularized multi-kernel based joint nonlinear feature selection and over-sampling for imbalanced data classification. Neurocomputing 234, 38–57 (2017)

    Article  Google Scholar 

  4. Cao, P., Zhao, D., Zaiane, O.: An optimized cost-sensitive svm for imbalanced data learning. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 280–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_24

    Chapter  Google Scholar 

  5. Castro, C.L., Braga, A.P.: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 24(6), 888–899 (2013)

    Article  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique (2011)

    Google Scholar 

  7. Guo, H., Liu, H., Wu, C., Zhi, W., Xiao, Y., She, W.: Logistic discrimination based on G-mean and F-measure for imbalanced problem. J. Intell. Fuzzy Syst. 31, 1155–1166 (2016)

    Article  MATH  Google Scholar 

  8. He, H., Garcia, E.A.: Learning from imbalanced data (2008)

    Google Scholar 

  9. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  10. He, H., Yang, B., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on IEEE World Congress on Computational Intelligence Neural Networks, IJCNN 2008 (2008)

    Google Scholar 

  11. Hernandez, J., Carrasco-Ochoa, J.A., Trinidad, J.F.M.: An empirical study of oversampling and undersampling for instance selection methods on imbalance datasets. In: CIARP (1) (2013)

    Google Scholar 

  12. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 5375–5384. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.580

  13. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  14. Jin, J., Li, Y., Chen, C.: Pattern classification with corrupted labeling via robust broad learning system. IEEE Trans. Knowl. Data Eng. 34(10), 4959–4971 (2021)

    Article  Google Scholar 

  15. Jin, J., Li, Y., Yang, T., Zhao, L., Duan, J., Chen, C.P.: Discriminative group-sparsity constrained broad learning system for visual recognition. Inf. Sci. 576, 800–818 (2021)

    Article  MathSciNet  Google Scholar 

  16. Khan, M., Arif, R.B., Siddique, M., Oishe, M.R.: Study and observation of the variation of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different datasets from UCI machine learning repository (2018)

    Google Scholar 

  17. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  18. Li, Y., Zhang, L., Qian, T.: 2D partial unwinding-a novel non-linear phase decomposition of images. IEEE Trans. Image Process. 28(10), 4762–4773 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Y., Jin, J., Zhao, L., Wu, H., Sun, L., Chen, C.L.P.: A neighborhood prior constrained collaborative representation for classification. Int. J. Wavel. Multiresolut. Inf. Process. 19, 2050073 (2020)

    Google Scholar 

  20. Liu, X., Wu, J., Zhou, Z., Member, S.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39, 539–550 (2008)

    Google Scholar 

  21. Shu, T., Zhang, B., Tang, Y.Y.: Sparse supervised representation-based classifier for uncontrolled and imbalanced classification. IEEE Trans. Neural Netw. Learn. Syst. 31, 2847–2856 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wang, H., Wang, X., Chen, C., Cheng, Y.: Hyperspectral image classification based on domain adaptation broad learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13(99), 3006–3018 (2020)

    Article  Google Scholar 

  23. Cheng, F., Zhang, J., Wen, C., Liu, Z., Li, Z.: Large cost-sensitive margin distribution machine for imbalanced data classification. Neurocomputing 224, 45–57 (2017)

    Article  Google Scholar 

  24. Yang, P., Yoo, P.D., Fernando, J., Zhou, B.B., Zhang, Z., Zomaya, A.Y.: Sample subset optimization techniques for imbalanced and ensemble learning problems in bioinformatics applications. IEEE Trans. Cybern. 44(3), 445–455 (2013)

    Article  Google Scholar 

  25. Yang, X., Kuang, Q., Zhang, W., Zhang, G.: AMDO: an over-sampling technique for multi-class imbalanced problems. IEEE Trans. Knowl. Data Eng. 30(9), 1672–1685 (2017)

    Article  Google Scholar 

  26. Yuan, H., Li, X., Xu, F., Wang, Y., Lai, L.L., Tang, Y.Y.: A collaborative-competitive representation based classifier model. Neurocomputing 275, 627–635 (2018)

    Article  Google Scholar 

  27. Zong, W., Huang, G.B., Chen, Y.: Weighted extreme learning machine for imbalance learning 101, 229–242 (2013). https://doi.org/10.1016/j.neucom.2012.08.010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Wang, S., Jin, J., Philip Chen, C.L. (2022). Weighted Competitive-Collaborative Representation Based Classifier for Imbalanced Data Classification. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13605. Springer, Cham. https://doi.org/10.1007/978-3-031-20500-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20500-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20499-9

  • Online ISBN: 978-3-031-20500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics