Skip to main content

Part of the book series: Logic, Argumentation & Reasoning ((LARI,volume 31))

  • 335 Accesses

Abstract

My purpose is to listen to what is sought to be said in the word interdisciplinarity, to carefully hear what “with” it, and “through” it, is trying to be thought out. My hypothesis is that interdisciplinarity constitutes the visible manifestation of three main determinations of great relevance for the understanding of our science and our time: 1) the opposition to a science becoming more and more fragmented and specialized; 2) the procedural approach to a more and more complex level of reality; 3) the refusal to lose the sense of unity and, at the same time, the experimentation of new forms to reach unity, in a more plural way. I will start by trying to hear the word itself, its birth, parentage, competitors, contexts of use and definition requirements (Part I). Afterwards, I will present and discuss those three main determinations, both in their past directions as in their current movements and future challenges (Part II).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, for instance, the case of artificial intelligence science which had its first international conference in Dartmonth, in 1956.

  2. 2.

    Cf. David (1979), Friedman and Friedman (1990), Birubaum-More et al. (1990), Decker (2001).

  3. 3.

    As Gusdorf says, people believe that “through the physical (or mystical) approach of diverse specialists by the additive juxtaposition of different perspectives and opinions, it is possible to (magically) to take big cognitive advantages, skip steps, learn quickly, to get, as they say, a general idea of the problem” (Gusdorf, 1990: 29).

  4. 4.

    The word “integration” was particularly adopted by the science teaching interdisciplinar programs put forward in the 70s and 80s. Staring with the celebrated “Harvard Project Physics: an Integrated Science Course” (Rutherford (1971, 1971b) and Jeffrey (1977)), science teaching integrated regime was largely adopted, both in the USA, in the URSS (Nikolaev, 1971) and Europe, mainly through the influence of Unesco (1971). It gave rise to a large amount of studies such as those of Rutherford and Gardner (1971), Gardner (1971), Parsegian (1971), Clark (1971), Pring (1973), Warwick (1973), Franck (1974), Ibánez (1974), Dale (1975), Baez (1975), Cohen (1975), Blum (1975), Hall (1975), Souchon (1975), Williams (1975), Thier (1975), Showalter (1975, 1976, 1981), Pellerey (1976), Haggis (1976), Goodlad (1976), Uria (1977), Dyasi (1981), D’Ambrosio (1981), Haggis and Adey (1981), Lambert (1981), Gadsen et al. (1981), Fedoseyev (1984), Pursová (1984), Milson and Ball (1986), Berlin, Jones (1987), House (1987), Gill and Gagnon (1988), Mathesis (1990), Reay (1990), Kobalda and Becthel (1991). For a critical appreciation of these programs, cf. Mitchell and Dietrich (2006) and Laurent (2011).

  5. 5.

    Namely, interdisciplinary groups (Marin Ibañez (1978), De Wachter (1976), Parthey (1983), Blackwell (1986), Macdonald (1986), Petrie (1986), Taylor (1986)), their conflicts (Sherif (1979), Bella and Williamson (1986)), their forms of recruitment (Taylor (1986)); the role of the scientist’s personality (Vignoli (1973), Horz (1983)); the modalities of cooperation (Rickman (1967), Sherif and Sherif (1969), Knorr et al. (1980), Swanson (1986), Wilbanks (1986), Anbar (1986), Blume (1987), Faure (1991), Rege Colet (1997), Jones et al. (1997), Thagard (1997, 2006); the organizational challenges that interdisciplinarity puts forward (Augé (1965), Bradley (1982), Hattery (1986), Stucki (1986), Friedman and Friedman (1990), Vertinsky and Vertinsky (1990), Casey (1994)); the institutional structures that interdisciplinarity requires (Whitley (1973, 1976, 1980), Smirnov (1984), Long (1986)); the international implications of interdisciplinary reseach (Di Castry (1976), Wilpert (1986), Polanco (1990), Choucri (1991)); the modalities of interdisciplinar research (De Wachter (1976), Krober (1983), Kuczynski et al. (1983), Pursová (1984), Klein (1986), Cassell (1986), Birnbaum-More et al. (1990), Klein (1990), Girardot (1991)), in its connection to technology (Gilbert (1976), Mulkay and Edge (1976), Rossini (1986a), Hiromatsu (1991) ou Decker (2001)) or industrial applications (Krohn and Schafer (1976), David (1979), etc.

  6. 6.

    That is the case, in Europe, of the “Centre International de Recherches et Études Transdisciplinaires” (CIRET), created in 1987 by Basarab Nicolescu, or the “International Network for Interdisciplinarity and Transdiscipinarity” (INIT) created in the Netherlands, in 2011, and, in the United States, the “Center for the Study of Interdisciplinarity”, created at Texas University, in 2008, or the “Association for Interdisciplinary Studies” (AIS) put forward in 2013.

  7. 7.

    Such as codisciplinarity (Palmade, 1979), intradiciplinarity (Auzias, 1982), or crossdisciplinarity (Sherif, 1979), Rossini (1986b), Klein (1990), Fazenda (2003), Nubiola (2005).

  8. 8.

    The concepts of multidisciplinarity or pluridisciplinarity are very often taken as a synonyms. That is, for example, the case of Piaget (1972:141 ff.) or Gusdorf (1977b: 588 and 1986: 30). Even when the two concepts are maintained, the distinction between them is minimal. For instance, for Berger (1972), multidisciplinarity would be the “juxtaposition of diverse disciplines, sometimes with no apparent relationship between them” (1972: 23) and pluridisciplinarity, “juxtaposition of more or less similar disciplines in their fields of knowledge” (ibid.).

  9. 9.

    See, for instance, Desbonnet (1978, 1979) and Lecocq (1982).

  10. 10.

    Many have been the efforts seeking to define interdisciplinarity and the words of the same family. The most classical attempts are those of Heckhausen (1972), Gusdorf (1967a, 1977a), Palmade (1979), Resweber (1981), René Thom (1990), Piaget (1972) and Delattre (1973). More recently, it should be mentioned the works of Klein (1990, 1991, 2000), Karlqvist (1999), Finkenthal (2001), Kellert (2008), Hoffmann et al. (2013), Repko (2012). On the difficulties of the definition of the concept of interdisciplinarity, cf. Also Heckhausen (1972), Hannoun (1974), Gozzer (1982), Lehmann and Schwartz (1990), Gabriel and Schwartz (1992), Levy (1992), Sinaceur (1992), Balsiger (1993), Rege Colet (1997), Paviani, Botomé (1993), Paviani (2003), Lenoir (1997), Pombo (2004), Peláez and Suarez (2010), Goeminne and Paredis (2011), Darbellay (2012), Frodeman et al. (2012).

  11. 11.

    For an analysis of the relations between interdisciplinarity and discipline, cf. Mittelstrass (1987), Heckhausen (1972), Boisot (1971, 1972), Swoboda (1979), Léon (1980), Kuczynski et al. (1983), Klein (1996) and Moran (2001).

  12. 12.

    This is one of the conclusions to be drawn from the works of Michel Foucault (1970, 1975). On this articulation between disciplines and school transmission, cf. Pombo (2002a, 20052011a) and the inspiring pages of Gil (1984: 437–460).

  13. 13.

    For a theorization of the concept of discipline in this cognitive sense, see Gil (1984, especially pp. 389–460), and also Laitko (1988), Guntau and Laitko (1991). See also Darden, Maull (1977), authors who work on the concept of “field” and Shapere (1984a, b) who studies the concept of “domain” For a discussion of the concepts of field and domain, as they were proposed by Darden, Maull (1977), cf. Hagstrom (1972) and Gokalp (1989).

  14. 14.

    Cf. Lemaine (1976), Whitley (1973, 1976, 1979, 1980, 2000), Shinn (1982), Boutier et al. (2006), Turner (2000, 2006).

  15. 15.

    Such as Frodeman et al. (2012), Klein (1996, 2005, 2010).

  16. 16.

    For an interesting critique of these theses, cf. Newell (1997).

  17. 17.

    For Aram (2004) disciplines are “thought domains – quasi-stable, partially integrated, semi-autonomous intellectual conveniences – consisting of problems, theories, and methods of investigation” (2004: 380).

  18. 18.

    According to Heckhausen (1972) seven criteria allow one discipline to be distinguished from others: (1) the material domain or object of study; (2) the possible set of observable phenomena; (3) the level of theoretical integration; (4) the methods; (5) the instruments of analysis; (6) the practical applications; and (7) the historical contingencies.

  19. 19.

    Bechtel (1986: 7) arrives to the point of reducing the concept of discipline to any disciplinary unit already involved in an interdisciplinary practice.

  20. 20.

    Marcovich and Shinn (2011) offer an interesting analysis of this controversy. At the same time, they propose the identification of a contemporary ‘new disciplinarity’ regime based on five key characteristics of disciplines that they identify as: referent, “borderlands” versus boundaries, elasticity, combinatorials and projects.

  21. 21.

    For a critique of Gibbons (1994) radical thesis of the disciplinary disappearance in “mode 2” knowledge production, cf. Weingart and Stehr (2000) and Shinn and Ragouet (2005).

  22. 22.

    The concept is mostly used in teaching experiences. Cf, Albert et al. (1971, 1974), Russo (1973), Masson (1977), Ruhla (1980).

  23. 23.

    For instance, Piaget, values the word multidisciplinarity as he considers that it happens “when the solution of a problem requires obtaining information from one or more sciences or knowledge sectors, without the disciplines that are called upon by those who use them being altered or enriched for that reason” (Piaget, 1972).

  24. 24.

    See the classical definitions of pluridisciplinarity of Palmade (1979) as “cooperation of a methodological and instrumental nature between disciplines and which does not imply an internal conceptual integration” or Resweber (1981): “Placing face to face with different disciplines aiming at the analysis of the same object and without implying the elaboration of a synthesis”.

  25. 25.

    Resweber defines interdisciplinarity as “analysis and confrontation of the conclusions [that] seeks the elaboration of a synthesis in terms of methods, laws and applications, advocates a return to the foundation of the discipline, reveals how the object’s identity of study becomes more complex through the different methods of the various disciplines and makes explicit their problematicity and mutual relativity” (Resweber, 1981). Delattre goes even further by defining interdisciplinarity as “Attempt to elaborate a sufficiently general and precise formalism that allows to express in the only language of the concepts, the concerns and contributions of a considerable number of disciplines that, otherwise, would remain contained in their respective dialects” (Delattre, 1973).

  26. 26.

    In this eschatological line, the most significant works are those of Nicolescu (1985 and 1996), founder, with René Berger, of the “UNESCO Transdisciplinarity Study Group” (1992) which stresses a very large conception of transdisciplinarity aiming at the superior unification between the sciences and the humanities. Cf. also Cazeneuve et al. (1994).

  27. 27.

    By merely indicative purpose, a catalogue of fields of study at German universities conducted in 1990 revealed the unprecedented growth of its number from circa two hundred to more than 4.000 (Carrier & Mittelstrass, 1990). The National Science Foundation reported in the 1940s, 54 specialties in Physics; in 1954, it reported 74 specialties and, in 1969, also only in Physics, it reported 154. From the 1980s, specialties in Physics are told by the thousands. And the mathematicians Philip Davis and Reuben Hersch (1998) estimated the number of mathematical specialities as 3400 in 1983.

  28. 28.

    Despite being one of the most powerful inspirer of the analytical method and, as such, of its consequences in terms of scientific specialization, the truth is that Descartes, at any time, failed to consider, as the main objective of Science, either the totality as a reconstitution of the whole, or the unity of the different disciplines in a integrated and globalized scheme of connections. As Descartes writes, “sientiae inter se connexae” (AT, X361, 12–13). Which, paradoxically, could make him one of the first defenders of interdisciplinarity.

  29. 29.

    Curiously enought, 200 years before, when the moment came for constructing a monumental cooperative work such as the french Encyclopédie, Diderot and D’Alembert already discussed the criteria for choosing their collaborators. D’Alembert explicitly claimed for a particular competence in a certain area of each contributor. As he clarifies, the Encyclopédie must be carried out by sages and artists, “each one taking care only of what he understood” (Discours Preliminaire: 127). For his part, Diderot insisted less in the specific competences of each sage but was more demanding about the true cooperative aims of the diverse contributors. However, we are still in the eighteenth century, that is, the man of culture is still able to comprehensively encompass the essential knowledge of his time. D’Alembert is not yet thinking of the specialist cloistered in his strict domain of knowledge and ignorant of everything else that the scientific development of the following centuries will produce and, for his part, Diderot would reject the hypothesis of the more or less dilettante generalist who is going to constitute himself, outside the future specialization of science, as his by-product. In other words, they were both far behind the intellectual transformations that will take place later, all along the nineteenth and the twentieth centuries.

  30. 30.

    Thuillier (1972: 256 e seg.) describes as the end of the « belle epoque» the transformation of the institutional conditions of science in the post-war period, its institutionalization, its bureaucratization (a consequence of the specialization of tasks), its professionalization (scientific work is made compatible as a “workforce” among others).

  31. 31.

    Lyotard’s diagnosis (1979) at the end of the 70s is similar: science let itself be invaded by an operative rationality that was no longer driven by the desire for truth but aiming only at obtaining practical immediate results.

  32. 32.

    The unrestrained competition between the production of vaccines and medicines among pharmaceutical companies (as well as among countries and ideologies) in the current Covid pandemics is very emblematic as it occurs despite the exceptionally difficult situation covering all men and women alive.

  33. 33.

    We refer to the “sociological inflation” put forward by the sociology of science strong program, that takes science as an institution among others, reducing it to a social structure determined by pure group factors and emptied of intrinsic rationality. Purpose that can have undeniable virtues and (has had) enormous popularity but that, in my view, is based on a serious disregard about the will of truth that runs through the scientific activity, thus missing science as a cognitive effort.

  34. 34.

    Since the beginning of the twentieth century, mathematics itself, due to the internal development of its own devices, became aware of complex, dynamic, unstable, self-organized systems, capable of adapting, and therefore, of choosing between various solutions, capable of bifurcations and novelties. It developed – and continues to develop today – formulations, theories, equations that make it possible to account for new phenomena of symmetry and invariance that different sciences – such as astrophysics, biology, geology, medicine, nanosciences, informatics – are today interested in studying. See the seminal works of Poincaré (1893), George Birkhoff (1927) and Mandelbrot (1982).

  35. 35.

    Many have stressed these thesis. Further some classical philosophers (Leibniz, Shelling) and all the organicist tradition (Whitehead), other well know examples are Prigogine and Stengers (1979), mentioned above. Even if the concept of complexity is born in the context of the early twentieth century micro-physics, it was only with the constitution of the Systems Theory (Bertallanfy), the Cybernetics (Wiener) and, later, the Complexity Sciences (in the 70s), that the ontological relevance and central role of the concept of complexity entered the scientific practice. Also Edgar Morin (1974, 1983) and Basarab Nicolescu (1985, 1996), the theoretical physicist who created in 1987 the “International Centre for Transdisciplinary Research and Study” (CIRET) are aligned with what they call “the complex thought”, by which they both aim to create a systematic approach able to unifying natural sciences and human sciences.

  36. 36.

    Against the polymathia which Heraclitus denounced already in the sixth century BC, against the additive accumulation of information (danger to which we are dramatically exposed today), the idea of unity of science in antiquity corresponds to the possibility of building a culture (paideia), an integrative system of knowledge towards a significant whole.

  37. 37.

    In his master work De Reductione Artium ad Theologiam, written in 1250/1 and published for the first time, in Cologne in 1486, S. Bonaventura (1221–1274) clarifies carefully what this convergence consists of. Precisely in § 7, the theoretical key of the work, S. Boaventura writes: “And just as all these illuminations originated in one and the same light, so also this knowledge converges to the knowledge of the Sacred Scripture, it ends in it and they are perfected in it, and through it they are ordained to eternal enlightenment. Hence it follows that all of our knowledge must end in the knowledge of sacred scripture (...) so that enlightenment is directed towards God, where it had its beginning” (Bonaventura, 1970).

  38. 38.

    Bacon – widely recognized as the “historical founder of the experimental method” (Thom, 1986: 12), is aware of the importance and novelty of his inductive logic as a new methodological support of all modern science, especially physics. As he states in his Novum Organon (1620): “As common Logics, which covers all by the syllogism, does not only apply to nature sciences but to all sciences without exception, so this inductive method shall be used by all sciences” (Novum Organon, 127).

  39. 39.

    The Mathesis Universalis program aims at setting up a universal science completely formalized, free from error, doubt and uncertainty. A science that would include all human knowledge, not by additive accumulation, but in an integrative form, by a process of deduction and logical engendering, from a set of primary categories, pure concepts or primitive terms. Two major assumptions are here present: (1) reality can be fully apprehended by reason; (2) mathematics is the key, the method and the model of that intelligibility

  40. 40.

    As Leibniz writes: “that language can be established even if philosophy is not finished and, as the science of men grows, that language will also grow” (Leibniz, Ed. Couturat, 1903: 28).

  41. 41.

    The construction of the characteristica universalis implies three moments: a first that tries to ascertain the set of simple or primitive ideas to which all others are reducible; a second, which consists of assigning a suitable sign to each of these simple ideas; a third that, by combinatorics, makes it possible to obtain all complex concepts and their respective symbolic representations (Leibniz, Ed. Gerhardt, IV: 73). In its apparent simplicity, this project is an immense task. Right at the level of the first moment – that of the constitution of the list of primitive terms – it implies an exhaustive inventory of all concepts in their relations of belonging and subordination, in their hierarchy and multiple articulation, that is, the full coverage of the human knowledge, in a word, the realization of encyclopaedia. (Pombo, 2002b, 2013, 2014).

  42. 42.

    Directly and explicitly claiming Leibniz’s Characteristica Universalis, Gottlob Frege (1848–1925) project of the Begriffschrift does not however accept the Leibnizian demand of a close articulation between the characteristica universalis and the encyclopedia (Frege, 1882: in particular 71–72).

  43. 43.

    Louis Couturat (1868–1914), a great scholar of Leibniz’s thought and the first great editor of his logical work, returns to the question of the universal language by working on the logical problems involved in it, thus constituting himself (together with Peano, Lalande, Weber, Vendryes, Lévy-Bruhl, Jespersen, Lorenz, Sapir, Cohen, Martinet, Ogden and Richards among others) as the great animator, at the beginning of the twentieth century, of the interlinguist movement (Couturat, 1912). For further developments, see Pombo (1987).

  44. 44.

    Differently from Carnap’s proposal of a unified language based on the logical analysis of scientific statements (Carnap, 1934), Neurath stresses the progressive constitution of a “universal jargon” or “lingua franca” (Neurath, 1947: 81) able to express scientific statements and arguments through natural language reinforced with scientific terms. Further, Neurath invented, and effectively constructed, a universal language of hieroglyphic type – the Wiener Methode der Bilstatistik (YSOTYPE) – a visual method that “displays” the information, compare the data, make explicit the relationships, that is, a pioneer methodology of “information visualisation” (Pietarinen, 2011: 77). As Pietarinen stressed “Isotype conceptualisations are today in global use throughout the public sphere as well as on the internet” (2011: 77).

  45. 45.

    For a detailed presentation of Leibniz’s diverse attempts for the construction of a universal scientific language, as well as of the main antecedents and followers of Leibniz’s project, cf. Pombo (1987).

  46. 46.

    In fact, in order to overcome the language difficulties that arise in the relationship between the specialized scientific languages, several solutions have been advanced. The strongest concerns the possibility of constructing a unified scientific language that all sciences would adopt or in which they would be translated. The weaker, points to the direct traductibility of the various scientific languages by proclaiming an analogy between scientific disciplines and natural languages, as different points of view. See, for instance, Lepetit who stresses that “a discipline that dies is like a language that disappears” (Lepetit, 1990: 335).

  47. 47.

    Concepts of which Gusdorf immediately offers a significant list (Gusdorf, 1967b: 44–46 and Pombo (2004: 52–54).

  48. 48.

    Cf. Leibniz, De progressione dyadica, 1679 (Pombo, 1987).

  49. 49.

    For example, when he writes: “there are fields of scientific work that have been explored by different branches of Pure Mathematics, Statistics, Electrical Engineering and Neurophysiology ; each concept receives a different name that is assigned to it by each group, thus tripling or quadrupling the work” (Wiener, 1948: 2).

  50. 50.

    Similarly, Wilkinson (1961) also suggests that the concepts of “Information Theory” may complement the logical and mathematical structure of the language of science, contributing to the constitution of a grammatical structure common to all sciences. Allowing the use of a unitary language in describing phenomena, they therefore represent, as Wilkinson writes, “the most likely version of the so-called unity of science” (1961: 406).

  51. 51.

    Namely, Plineo’s Historia Naturalis (I), Saint Isidorus Etimologies (VI), Luis Vives Tradentis Disciplines (1531), Comenius De Rerum Humanorum Emendatione (1642–1670), Pierre Bayle Dictionnaire Linguistique et Critique (1647–1706), Coleridge Encyclopaedia Metropolitana (1817–1845) or Hegel’s Enzyklopädie der Philosophischen Wissenschaften (1817).

  52. 52.

    A work whose desired, announced, requested collective authorship proliferated in a surprising way, as if it were a fuse. This authorship, besides being extensive, extends to several cultural and social layers: both the great figures of the time (Du Marsais, Quesnay, De Brosses, Turgot, Condillac, Helvetius, Rousseau, Voltaire, Montesquieu), as well as the obscure contributions, from the arts and crafts, invited and spontaneous, known and unknown (Pombo, 2002b).

  53. 53.

    That collective condition is mentioned in the very title: the Encyclopédie is elaborated by a “société de gens de lettres” and edited “mis en ordre et publiée”, by Diderot (1713–1784) and D’Alembert (1717–1783).

  54. 54.

    Around 4000 in the case of the 15th edition of the Britannica (1973–1974).

  55. 55.

    Also Leibniz says, “l’ encyclopédie est un corps oú les connaissances humanise les plus importants sont rangées par ordre” (Leibniz, 1960, 7: 40).

  56. 56.

    The first volume of the Encyclopédie (1751) of Diderot and D’Alembert included in fact a classificatory system in the form of a chart, the celebrated “Systhème figuré des connaissances humaines” in which the hierarchical, theological model of science’s classification is abandoned in favour of an horizontal, territorial point of view (Pombo, 2006a: 301–306, and also 2006c).

  57. 57.

    As seen before, Wiener, 200 years later, said exactly the same: «exploring the blanks on the science map requires a team of scientists, each of whom is an expert in their own field but has significant competence in the fields of their neighbours» (Wiener, 1948: 3).

  58. 58.

    There is yet another kind of link. The mechanism – intended to escape the censorship and persecution to which the Encyclopédie was subjected – consists in establishing not only internal but secret relations between two or more subjects. One of the most famous examples, chosen by Diderot himself to explain this type of link, is that of the entrance “Cordeliers”, respectfully dedicated to the Franciscans, but which is linked to the entrance “Capuchon” in which the same Franciscans are violently ridiculed. The procedure is as follows: in the most important entries, those that, more easily, could be suspected by the political and ecclesiastical authorities, the Encyclopédie professes the more harmless and orthodox theses. However, scattered among these, seemingly harmless entries serve as a pretext for very unorthodox developments on questions of morals, religion and politics.

  59. 59.

    In general terms, the logical analysis of language has a double program: positive, to clarify the cognitive content of scientific statements and the terms that constitute them; negative, to explain the meaningless character of terms and propositions, or pseudo-propositions, on which the Carnap’s project for the radical elimination of metaphysics is based.

  60. 60.

    In the vast bibliography on this issue that defines much of the current philosophical agenda, just a reference to the reductionist side, Daniel Dennett (1997), and António Damásio (1994) and, on the non-reductionist side, Jerry Fodor (1975) and John Searle (1997).

  61. 61.

    The first number in this collection is extremely significant. It is a text by Neurath entitled Unified Science and Psychology (1932), in which Neurath illustrates, in a particularly suggestive way, the immediate benefits of the unity of science program. Psychology is the science chosen for the example. In addition to revealing Neurath’s persistent interest in extending the unity of science program to Social and Human Sciences, Psychology has yet another advantage. Internally divided into divergent schools – behaviorism, gestaltism, individual psychology, reflexology and psychoanalysis, each with its terminology, its more or less explicit metaphysical assumptions, its linguistic thinking – it was supposed that the “incorporation of Psychology in unified science” (Neurath, 1932: 16) would allow the internal unification of that science to operate. Its reconstruction in terms of unified language would appear as an indispensable condition for the comparison of the results and theories achieved by each school and, consequently, for the creation of a true “scientific atmosphere” (Neurath, 1932: 22), capable of overcoming misunderstandings and rivalries. The strength of the argument thus results, in large part, from the fact that, instead of referring to a distant future, Neurath points to the effects that unity of science may already have, in the short term, within a particular particular science.

  62. 62.

    As Charles Morris (1969: IX) writes, “the Encyclopedia was, in its origin, an idea of Neurath”, an idea that Neurath knew how to mature and substantiate. For further developments cf. Haller (1991).

  63. 63.

    Neurath intended too the publication of a ten volumes Atlas plus Thesaurus including maps, graphics and other pictorial representations as “means of unified visual aid” (Neurath, 1938a: 25).

  64. 64.

    Daniel Andler interprets Neurath’s idea of orchestration as a “federalist” project (Andler 2010), an “anti-totalitarian” aim of promoting “free circulation between the disciplines” (Andler, 2011: 142). “a way of inviting a fruitful dialogue” (Andler, 2011: 142) between diverse disciplines that, otherwise, would disperse in their diversified developments.

  65. 65.

    Designed to have the structure of an onion, the encyclopedia would consist of a heart formed by 20 monographs dedicated to the fundamentals of unified science and organized into four major sections: the first, dedicated to the theoretical analysis of the problem of the unity of science, the second, on methodological issues, the third aimed to give an overview of the current state of systematization of the various particular sciences and their articulations, and the fourth, aimed to account for the main applications of the particular sciences in the fields of education, medicine, engineering and right. Around this heart, all other predicted monographs, dedicated to the different particular sciences and dealing with specific problems to each of them, would be constituted as overlapping layers. And, in the very heart of the onion, there would be “two volumes which will deal with the problems of systematization in special sciences and in unified science” (Neurath, 1938b: 24).

  66. 66.

    From the initial ambitious plan, Neurath managed to gather and publish in 1938, under the auspices of the University of Chicago, in 1938/9, a series of nineteen monographs, collected in the two precious volumes entitled International Encyclopedia of Unified Science, with a Preface and an Introduction by Neurath himself (Neurath, 1937, 1938a, respectively). This edition included a wide range of collaborations, among others, texts by Neurath, Niels Bohr, Dewey and Russel, Nagel and Morris. In 1962, almost thirty years later, at the joint initiative of Morris and Carnap, these monographs were reissued together with nine more new studies, their respective indexes and bibliography, under the title of Foundations of Unity of Science. Towards an International Encyclopedia of Unified Science. For further details, cf. Morris (1969).

  67. 67.

    Neurath intended to collect the contribution of a wide range of European and Asian collaborators, to publish a series of 260 independent monographs, to gather in about 26 volumes and to carry out simultaneous editions in English, French and German. Neurath (1937: 139, 1938a: 24–25).

  68. 68.

    Among the critics of the idea, the debate has been polarised by relativists like Rescher (2005) or Giere (1999) and pluralists like Suppes (1978), Cartwright (1983, 1999), Dupré (1993) or Galison and Stump (1996). Among defenders, between strong reductionist positions (Nagel (1961), Hempel (1969), Hooker (1981)), and diverse anti-reductionist attempts such as Darden and Maull (1977), Shapere 1977) or Kein (1990).

  69. 69.

    Several proposals of bridge devices, “bridge reduction” (Nagel, 1961), “micro-reduction” (Oppenheim & Putnam, 1958; Causey, 1976) have been put forward.

  70. 70.

    As Carnap writes (1930: 144): “there are no different sciences with fundamentally different methods or different sources of knowledge, but only one science”, read Physics.

  71. 71.

    For a critique of the “myth” of an experimental method in its short-sighted but arrogant experiential interpretation, see Thom (1986).

  72. 72.

    Cf., for example, Bechtel (1987) and especially Müller (1991) who offers an interesting study of methodological transfer in relation to the historiography of Psychology.

References

  • Abbott, A. (2001). Chaos of disciplines. University of Chicago Press.

    Google Scholar 

  • Albert, L., Blumeau, M., Joligeon, N., & Spindler, A. (1971). Experiences de Pluridisciplinarité dans le Second Cycle (Moderne et Classique). Technologie, Physique, Biologie, Mathématiques. C. I. E. P.

    Google Scholar 

  • Albert, L., Blumeau, M., Joligeon, N., & Spindler, A. (1974). Une Expérience Pluridisciplinaire au C. E. S. de Sommières. Rencontres Gardoises, Março, 15–18.

    Google Scholar 

  • Anbar, M. (1986). The ‘Bridge Scientist’ and his role. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 155–164). Lomond.

    Google Scholar 

  • Andersen, H. (2016). Collaboration, interdisciplinarity, and the epistemology of contemporary science. Studies in History and Philosophy of Science, 56, 1–10.

    Article  Google Scholar 

  • Andler, D. (2010). Federalism in science. Synthese, 151, 519–522.

    Article  Google Scholar 

  • Andler, D. (2011). Unity without a myth. In D. J. Symmons, J. M. Torres, & O. Pombo (Eds.), Otto Neurath and the unity of science (pp. 129–144). Springer.

    Chapter  Google Scholar 

  • Apostel, L. (1977). L’Interdisciplinarité dans ses rapports avec la Théorie des Modèles et la Théorie Génerale des Systèmes. In M.-F. Fresco (Ed.), Philosophie et Interdisciplinarité (pp. 19–24). Centre International d’ Études Pédagogiques.

    Google Scholar 

  • Apostel, L. (1978). Can systems theory offer us a philosophie of nature? In M. Gysens-Gosselin (Ed.), Acta van Het Interdisciplinair Colloquium over Communicatie Tussen Wetenschaps- systemen (pp. 284–332). Vrije Universiteit.

    Google Scholar 

  • Aram, J. D. (2004). Concepts of interdisciplinarity: Configurations of knowledge and action. Human Relations, 57(4), 379–412.

    Article  Google Scholar 

  • Auge, P. (1965). Les Aspects Synthétiques dans l’Organization de la Recherche Scientifique. In R. Maheu (Ed.), Science et Synthèse (pp. 277–290). Gallimard.

    Google Scholar 

  • Auzias, A. (1982). L’Interdisciplinarité en Solitaire. Le Français Aujourd’hui, 59, 29–31.

    Google Scholar 

  • Bachelard, G. (1951). L’activité Rationaliste de la Physique Contemporaine. Presses Universitaires de France.

    Google Scholar 

  • Bacon, F. (1620). Novum Organon. In J. Spedding (Ed.), The works of Francis Bacon (pp. 39–248). Ellis and Heath (1857–1874), Vol. IV.

    Google Scholar 

  • Baez, A. (1975). L’Enseignement Scientifique Intégré et la Formation Générale. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. II, pp. 149–157). Unesco.

    Google Scholar 

  • Bak, P. (1994). Self-organized critically: A holistic view of nature. In G. Cowan, D. Pines, & D. Meltzer (Eds.), Complexity. Metaphors, models and reality (pp. 477–495). Addison-Wesley Publishing Company.

    Google Scholar 

  • Balsiger, P. W. (1993). Les Diverses Interdisciplinarités. Coordination, 43, 4–5.

    Google Scholar 

  • Becher, T. (1989). Academic tribes and territories: Intellectual enquiry and the cultures of disciplines. The Society for Research into Higher Education and Open University Press.

    Google Scholar 

  • Bechtel, W. (1986). The nature of scientific integration. In W. Bechtel (Ed.), Integrating scientific disciplines (pp. 3–52). Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Bechtel, W. (1987). Psycholinguistics as a case of cross-disciplinary research: Symposium introduction. Synthese, 72, 293–311.

    Article  Google Scholar 

  • Bella, D. A., & Williamson, K. J. (1986). Conflicts in interdisciplinary research. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 347–354). Lomond.

    Google Scholar 

  • Berger, G. (1972). Introduction. In CERI (Ed.), L’Interdisciplinarité. Problèmes d’Enseignement et de Recherche dans les Universités (pp. 21–69).

    Google Scholar 

  • Berlin, D. F., & Jones, S. (1987). The integration of science and mathematics: Early childhood and middle school levels. School Science and Mathematics, 87, 271–273.

    Article  Google Scholar 

  • Birkhoff, G. (1927). Dynamical systems. AMS books.

    Google Scholar 

  • Birnbaum-More, P. H., Rossini, F. A., & Baldwin, D. R. (Eds.). (1990). International research management studies in interdisciplinary methods from business, government, and academia. Oxford University Press.

    Google Scholar 

  • Blackwell, G. W. (1986). Multidisciplinary team research. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 103–114). Lomond.

    Google Scholar 

  • Blum, A. (1975). Vers une Théorie de l’Enseignement Intégré des sciences. In Unesco, Tendances Nouvelles de l’Enseignement Intégré des sciences (Vol. II, pp. 27–48). UNESCO.

    Google Scholar 

  • Blume, S. S. (1987). The theoretical significance of cooperative research. In Blume et al. (Eds.), The social direction of the public sciences (Vol. XI, pp. 3–38). D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Boisot, M. (1971). Discipline, Interdisciplinarité, Programme Interdisciplinaire. Revue Française de Pédagogie, 32–38.

    Google Scholar 

  • Boisot, M. (1972). Discipline et Interdisciplinarité. In CERI (Ed.), L’Interdisciplinarité. Problèmes d’Enseignement et de Recherche dans les Universités (pp. 90–98). OCDE.

    Google Scholar 

  • Bonaventura, S. (1250). De Reductione Artium ad Theologiam, (portuguese translation by P. Ilídio de Sousa Ribeiro, “Redução das Ciências à Teologia“). Atlantida (1970).

    Google Scholar 

  • Börner, K. (2010). Atlas of science: Visualizing what we know. MIT Press.

    Google Scholar 

  • Boulding, K. (1956). General systems theory. The skeleton of science. In L. von Bertalanffy (Ed.), General systems. Yearbook of the society for the advancement of general systems theory (Vol. I, pp. 11–17). University of Southern California Press.

    Google Scholar 

  • Boutier, J., Passeron, J.-C., & Revel, J. (Eds.). (2006). Qu’est-ce qu’une discipline ? Editions de l’Ecole des Hautes Études en Sciences Sociales.

    Google Scholar 

  • Bowker, G. (1993). How to be universal: Some cybernetic strategies, 1943–1970. Social Studies of Science, 23(1), 107–127.

    Article  Google Scholar 

  • Bradley, R. T. (1982). Ethical problems in team research. A structural analysis and an agenda of resolution. The American Sociologist, 87–94.

    Google Scholar 

  • Bunge, M. (1982). Is Chemistry a Branch of Physics? Zeitschrift allgemeine Wissenschaftstheorie, XIII, 209–223.

    Article  Google Scholar 

  • Carnap, R. (1930). The old and the new logic. In A. J. Ayer (Ed.), Logical positivism (pp. 133–146). The Free Press (1959).

    Google Scholar 

  • Carnap, R. (1934) The task of the logic of science. In B. McGuinsess (Ed.), Unified science. The Vienna Circle monograph series originally edited by Otto Neurath, now in an English Edition (pp. 46–66). Reidel Publishing Company (1987).

    Google Scholar 

  • Carrier, M., & Mittelstrass, J. (1990). The unity of science. International Studies in the Philosophy of Science, IV(1), 17–31.

    Article  Google Scholar 

  • Cartwright, N. (1983). How the laws of physics lie. Oxford University Press.

    Book  Google Scholar 

  • Cartwright, N. (1999). The dappled world: A study of the boundaries of science. Cambridge University Press.

    Book  Google Scholar 

  • Casey, B. A. (1994). The administration and governance of interdisciplinarity programs. In J. T. Klein & W. Doty (Eds.), Interdisciplinary studies today. Jossey-Bass.

    Google Scholar 

  • Cassell, E. J. (1986). How does interdisciplinary work get done? In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 339–346). Lomond.

    Google Scholar 

  • Causey, R. L. (1976). Unified theories and unified science. Boston Studies in the Philosophy of Science. XXXII, 3–13. D. Reidel Publishing Company.

    Google Scholar 

  • Causey, R. L. (1977). Unity of science. D. Reidel Publishing Company.

    Book  Google Scholar 

  • Cazenave, M., Nicolescu, B., & Robon, J. (1994). Rencontres Transdisciplinaires. In Bulletin Interactif du Centre International de Recherches et d’études Transdisciplinaires. Unesco/CIRET.

    Google Scholar 

  • Choucri, N. (1991). Le Changement Mondial et ses Implications pour la Recherche Interdisciplinaires. In E. Portella (Ed.), Entre Savoirs. L’Interdisciplinarité en acte: Enjeux, obstacles, perspectives (pp. 259–276). Ères/Unesco.

    Google Scholar 

  • Cipolla, F., & Mosca, G. (1972). Linguaggio, Strumento dell’Interdisciplinarità. Ricerche Didattiche, 4(5), 113–116.

    Google Scholar 

  • Clark, R. (1971). The case for an integrated tertiary science course. In Unesco (Ed.), New trends in integrated science teaching (Vol. I, pp. 270–276). Unesco.

    Google Scholar 

  • Cohen, D. (1975). L’Evaluation des Programmes d’Enseignement Scientifique Intégré. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. II, pp. 127–148). Unesco.

    Google Scholar 

  • Couturat, L. (1912). Sur la Structure Logique du Langage. Revue de Métaphisique et de Morale, 20(1), 1–24.

    Google Scholar 

  • D’alembert, D (Eds.). (1751–1765). Encyclopédie ou Diccionaire Raisonné des Sciences, des Arts et des Métiers, par une Société de Gens de Lettres, mis en ordre et Publiée par M. Diderot, de l’Académie Royale des Sciences et Belles–Lettres de Prusse, et Quant à la partie Mathématique par M. D’Alembert, de l’Académie Royale des Sciences de Paris, de celle de Prusse et de la Société Royale de Londres, 28 vols. Le Breton/Briasson/Durand.

    Google Scholar 

  • D’ambrosio, U. (1981). Relations entre les Sciences Intégrées et les autres Matières du Programme. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. V, pp. 25–32). Unesco.

    Google Scholar 

  • Dale, L. G. (1975). L’Enseignement Intégré des Sciences au niveau des Études Supérieures. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. II, pp. 83–96). Unesco.

    Google Scholar 

  • Damasio, A. (1994). Descartes’s error. Emotion, reason and human brain. Putnam Publishing.

    Google Scholar 

  • Darbellay, F. (2012). La Circulation des Savoirs. Interdisciplinarité, Concepts Nomades, Analogies, Métaphores. Peter Lang.

    Book  Google Scholar 

  • Darden, L., & Maull, N. (1977). Interfield theories. Philosophy of Science, XLIV, 43–64.

    Article  Google Scholar 

  • David, E. (1979). Science futures: The industrial connection. Science, 203, 837–840.

    Article  Google Scholar 

  • Davis, P., & Hersch, R. (1998). Mathematical experience. With an introduction by Gian-Carlo Rota. A Mariner Book, Houghton Mifflin Company.

    Google Scholar 

  • De Wachter, M. (1976). Interdisciplinary team work. Journal of Medical Ethics, 2, 52–57.

    Google Scholar 

  • Decker, M. (Ed.). (2001). Interdisciplinarity in technology assessment: Implementation and its chances and limits. Springer.

    Google Scholar 

  • Delattre, P. (1973). Recherches Interdisciplinaires. Objectifs et Difficultés (trad. port. de Patrícia Medeiros). Investigações Interdisciplinares. Objectivos e Dificuldades. In Guimarães, Conceição, Pombo, Levy (Orgs.), Antologia II (pp. 183–212). Projecto Mathesis/DEFCUL (1992).

    Google Scholar 

  • Delattre, P. (1981). Théorie des Systèmes et Epistemologie, (trad. port. de José Afonso Furtado). Teoria dos Sistemas e Epistemologia.A Regra do Jogo..

    Google Scholar 

  • Dennett, D. (1997). Kinds of minds. Toward an understanding of consciousness. Basic Books.

    Google Scholar 

  • Desbonnet, J. (1978). Une Expérience de Transdisciplinarité au Lycée de Montgeron dans le Second Cycle. Les langues modernes, 3(4), 349–353.

    Google Scholar 

  • Desbonnet, L., & Leclercq, M. (1979). Une Expérience de Transdisciplinarité au Lycée de Montgeron. Le Français aujourd’hui, 45, 45–53.

    Google Scholar 

  • Di Castry, F. (1976). International, interdisciplinary research ecology: The case of man and the biosphere. Human Ecology, 4, 235–246.

    Article  Google Scholar 

  • Dogan, M. (1991). L’Innovation dans les Sciences Socials: La Marginalité Créatrice. Puf.

    Book  Google Scholar 

  • Dogan, M. (1996), The hybridization of social science knowledge. Library Trends, 44(2), 296–315.

    Google Scholar 

  • Dogan, M., & Pahre, R. (1990). Creative marginality: Innovation at the intersections of social sciences. Westview Press.

    Google Scholar 

  • Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunitys of science. Harvard University Press.

    Google Scholar 

  • Dyasi, H. (1981). L’Enseignement Intégré des Sciences et l’Éducation Relative à l’Environnement. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. V, pp. 104–116). Unesco.

    Google Scholar 

  • Faure, O. (1991). La Mise en Oeuvre de l’Interdisciplinarité. In E. Portella (Ed.), Entre Savoirs. L’Interdisciplinarité en Acte: Enjeux, Obstacles, perspectives (pp. 109–116). Ères/Unesco.

    Google Scholar 

  • Fazenda, A. I. C. (2003). A Interdisciplinaridade : História, Teoria e Pesquisa. Papirus.

    Google Scholar 

  • Fedoseyev, P. (1984). Philosophy and the integration of knowledge. In A. D. Ursul & J. Z. Z. Javurek (Eds.), Integration of science and the systems approach (pp. 13–31). Elesevire.

    Google Scholar 

  • Feigl, H. (1953). Unity of Science and Unitary Science. In H. Feigl & M. Brodbeck (Eds.), Readings in the philosophy of science (pp. 382–384). Appleton Century Crofts.

    Google Scholar 

  • Finkenthal, M. (2001). Interdisciplinarity: Toward the definition of a meta discipline? Peter Lang.

    Google Scholar 

  • Fodor, J. A. (1975). The language of thought. Harvester Press.

    Google Scholar 

  • Foucault, M. (1970). L’Ordre du Discours. Gallimard.

    Google Scholar 

  • Foucault, M. (1975). Surveiller et Punir. Gallimard.

    Google Scholar 

  • Franck, C. (1974). Paradigme de l’Intégration Fonctionnelle et Unification de l’Europe. Revue des Questions Scientifiques, CXLV, 90–97.

    Google Scholar 

  • Frege, G. (1882). Ueber den Zweck der Begriffsschrift (french translation by Claude Imbert, “Sur le But de l’Ideographie”). In Gottlob Frege, Écrits Logiques et Philosophiques. Seuil (1971).

    Google Scholar 

  • Frey, G. (1973). Methodological problems of interdisciplinary discussions. Ratio, XV(1), 161–182.

    Google Scholar 

  • Friedman, R. S., & Friedman, R. C. (1990). American science, academic organization, and interdisciplinary research. In P. H. Birnbaum-More, F. A. Rossini, & D. R. Baldwin (Eds.), International research management studies in interdisciplinary methods from business, government, and academia. Oxford University Press.

    Google Scholar 

  • Frodeman, R., Klein, J. T., & Mitcham, C. (Eds.). (2012). The Oxford handbook of interdisciplinarity. Oxford University Press.

    Google Scholar 

  • Fuller, S. (2003). Interdisciplinarity: The loss of the heroic vision in the market place of ideas. A Referência Da Hiperligação Não É Válida.

    Google Scholar 

  • Gabriel, F., & Schwartz, G. (1992). L’interdisciplinarité. CO Informations, 1, 11–17.

    Google Scholar 

  • Gadsen, T., Becht, P., & Dawson, G. (1981). Conception et Contenu des Cours de Sciences Intégrés. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. V, pp. 39–48). Unesco.

    Google Scholar 

  • Galison, P. (1997). Image and logic – A material culture of microphysics. University of Chicago Press.

    Book  Google Scholar 

  • Galison, P., & Stump, D. J. (Eds.). (1996). The disunity of science – Boundaries, contexts and power. Stanford University Press.

    Google Scholar 

  • Gardner, M. (1971). The earth science curriculum project. In Unesco (Ed.), New trends in integrated science teaching (Vol. I, pp. 261–269). Unesco.

    Google Scholar 

  • Gasset, O. (1929). La Rebelion de las Massas. Revista de Occidente (1970).

    Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Scott, P., Schwartzmen, S., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. Sage.

    Google Scholar 

  • Giere, R. N. (1999). Science without laws. Chicago University Press.

    Google Scholar 

  • Gil, F. (1984). Mimésis e Negação. Imprensa Nacional /Casa da Moeda.

    Google Scholar 

  • Gilbett, G. N. (1976). The development of science and scientific knowledge: The case of radar meteor research. In G. Lemaine et al. (Eds.), Perspectives on the emergence of scientific disciplines (pp. 187–204). Monton/Aldine.

    Chapter  Google Scholar 

  • Gill, G. S., & Gagnon, R. (1988). Pour un Enseignement intégré de la science et de la technologie: Trois modules. Unesco.

    Google Scholar 

  • Girardot, G. (1991). Obstacles à l’Institutionnalisation de la Recherche Interdisciplinaire. In E. Portella (Ed.), Entre Savoirs. L’Interdisciplinarité en acte: Enjeux, Obstacles, Perspectives (pp. 163–166). Ères/Unesco.

    Google Scholar 

  • Goeminne, G., & Paredis, E. (Eds.). (2011). Opening up the in-between: Interdisciplinarity reflections on science, technology and social change. Foundations of Science, 16, 2–3.

    Google Scholar 

  • Gokalp, I. (1989). Sur les Interrelations entre Domaines Scientifiques. Revue de Synthèse, IV(3/4), 453–468.

    Article  Google Scholar 

  • Goodlad, J. I. (1976). Les Sciences Intégrées, la Formation des Maîtres et l’Amélioration de l’Instruction Scolaire. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. III, pp. 123–133). Unesco.

    Google Scholar 

  • Gozzer, G. (1982). Un Concept Encore Mal Défini: l’Interdisciplinarité. Perspectives, XII(3), 299–311.

    Google Scholar 

  • Guntau, M., & Laitko, H. (1991). On the origin and nature of scientific disciplines. In R. S. Cohen & W. R. Woodward (Eds.), World views and scientific discipline formation (pp. 17–28). Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Gusdorf, G. (1967a). Les Sciences de l’Homme sont des Science Humaines. Société d’Éditions les Belles Lettres.

    Google Scholar 

  • Gusdorf, G. (1967b). Project de Recherche Interdisciplinaire dans les Sciences Humaines. In G. Gusdorf (Ed.), Les Sciences de l’Homme sont des Sciences Humaines (pp. 35–63). Les Belles Letres.

    Google Scholar 

  • Gusdorf, G. (1977a). De l’Histoire des Sciences à l’Histoire de la Pensée. Payot.

    Google Scholar 

  • Gusdorf, G. (1977b). Past, present and future in interdisciplinary research. International Social Science Journal, 29, 580–600.

    Google Scholar 

  • Gusdorf, G. (1985). Refléxions sur l’Interdisciplinarité. Convivium, XXIV(128), 19–50.

    Google Scholar 

  • Gusdorf, G. (1986). Connaissance Interdisciplinaire. In Encyclopaedia Universalis. Encyclopaedia Universalis France S.A, Vol. VIII: 1086–1090 (trad. port. do Projecto Mathesis). Conhecimento Interdisciplinar. In Mathesis, Antologia I. Departamento de Educação da FCUL/Projecto Mathesis, pp. 9–40 (1990).

    Google Scholar 

  • Gusdorf, G. (1990). Les Modéles Épistémologiques dans les Sciences Humaines. Bulletin de Psychologie, 397, 18, XLIII, 858–868.

    Google Scholar 

  • Haggis, S. M. (1976). Les Sciences Intégrées: un Défi pour le Maitre de Sciences. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. III, pp. 23–28). Unesco.

    Google Scholar 

  • Haggis, S., & Adey, P. (1981). L’Enseignement Intégré des Sciences dans le Monde. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. V, pp. 33–38). Unesco.

    Google Scholar 

  • Hagstrom, W. O. (1972). The differentiation of disciplines. In B. Barnes (Ed.), Sociology of science. Selected books (pp. 121–125). Penguin Books.

    Google Scholar 

  • Hall, W. C. (1975). Buts et Objectifs de l’Enseignement Intégré des Sciences. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. II, pp. 15–26). Unesco.

    Google Scholar 

  • Haller, R. (1991). On Otto Neurath. In T. E. Uebel (Ed.), Redescovering the forgotten Vienna Circle (Australian studies on Otto Neurath and the Vienna Circle) (pp. 25–31). Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Hannoun, M. H. (1974). Travaux sur les Concepts Interdisciplinaires dans les Activités d’Éveil. In SERP (Ed.), La Recherche en Education. Contribution à la Méthodologie (pp. 21–28). INRDP.

    Google Scholar 

  • Hattery, L. H. (1986). Interdisciplinary research management. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 13–28). Lomond.

    Google Scholar 

  • Heckhausen, H. (1972). Discipline et Interdisciplinarité. In CERI (Ed.), L’Interdisciplinarité. Problèmes d’Enseignement et de Recherche dans les Universités (pp. 83–90). OCDE.

    Google Scholar 

  • Hempel, C. G. (1969). Reduction, ontological and linguistic facets. In M. White, S. Morgenbesser, & P. Suppes (Eds.), Philosophy, science and method: Essays in honor of Ernest Nagel (pp. 179–199). St. Martin’s Press.

    Google Scholar 

  • Hiromatsu, T. (1991). La Recherche Universitaire à l’Université de Tokyo: L’Exemple du Centre de Recherche pour la Science et la Tecnologie Avancées (RCAST). In E. Portella (Ed.), Entre Savoirs. L’Interdisciplinarité en Acte: Enjeux, Obstacles, Perspectives (pp. 137–140). Ères/Unesco.

    Google Scholar 

  • Hoffmann, M. H. G., Schmidt, J. C., & Nersessian, N. J. (2013). Philosophy of and as Interdisciplinarity. Synthese, 190(11), 1857–1864.

    Article  Google Scholar 

  • Hooker, C. (1981). Towards a general theory of reduction. Dialogue: Canadian Philosophical Review/Revue canadienne de philosophie, 20(1), 38–59.

    Article  Google Scholar 

  • Horz, H. (1983). The role of a scientist’s personality in the interdisciplinarity process. Deutsche Zeitschrift für Philosophie, 31, 590–603.

    Google Scholar 

  • House, P. A. (1987). Intregrations of science and mathematics. School Science and Mathematics, 87, 360–363.

    Google Scholar 

  • Ibáñez, R. M. (1974). La Intregracion de las Enseñanzas. Revista de Orientatión Pedagogica, 26(203), 243–280.

    Google Scholar 

  • Jeffrey, A. W. (1977). Case study A: Evaluation of the Scottish integrated science syllabus. In Unesco (Ed.), New trends in integrated science teaching (Vol. IV, pp. 152–158). Unesco.

    Google Scholar 

  • Jones, B. F., Rasmussen, C. M., & Moffit, M. C. (1997). Real-life problem solving. A collaborative approach to interdisciplinary learning. American Psychology Association.

    Book  Google Scholar 

  • Karlqvist, A. (1999). Going beyond disciplines: The meanings of interdisciplinarity. Policy Sciences, 32(4), 379–383.

    Article  Google Scholar 

  • Kellert, S. H. (2008). Borrowed knowledge. Chaos theory and the challenge of learning across disciplines. University of Chicago Press.

    Book  Google Scholar 

  • Klein, J. T. (1986). The dialectic and rhetoric of disciplinarity and interdisciplinarity. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 85–100). Lomond.

    Google Scholar 

  • Klein, J. T. (1990). Interdisciplinarity. History, theory and practice. Wayne State University Press.

    Google Scholar 

  • Klein, J. T. (1991). Interdisciplinarity. Wayne State University Press.

    Google Scholar 

  • Klein, J. T. (1996). Crossing boundaries. Knowledge, disciplinarities and interdisciplinarities. University Press of Virginia.

    Google Scholar 

  • Klein, J. T. (2000). A conceptual vocabulary of interdisciplinary science. In P. Weingart & N. Stehr (Eds.), Practising interdisciplinarity (pp. 3–24). University of Toronto Press.

    Chapter  Google Scholar 

  • Klein, J. T. (2005). Humanities, culture and interdisciplinarity. State University New York Press.

    Google Scholar 

  • Klein, J. T. (2010). Creating interdisciplinary campus cultures: A model for strength and sustainability. Jossey Bass A. Willey.

    Google Scholar 

  • Knorr, K. D., Krohn, R., & Whitley, R. (Eds.). (1980). The social process of scientific investigation. Reidel.

    Google Scholar 

  • Koballa, T. R., & Bethel, L. (1991). Integration of science and other school subjects. In D. Holdzkom & P. B. Lutz (Eds.), Research within reach: Science education. A research-guided response to the concern of educators. National Teachers Education.

    Google Scholar 

  • Krober, V. G. (1983). Interdisziplinaritat-ein aktuelles Erfordernis der gesellschafts und wissenschaftsentwicklung. Deutsche Zeitschrift für Philosophie, 575–589.

    Google Scholar 

  • Krohn, W., & Schafer, W. (1976). The origins and structure of agricultural chemistry. In G. Lemaine et al. (Eds.), Perspectives on the emergence of scientific disciplines (pp. 27–52). Mouton/Aldine.

    Chapter  Google Scholar 

  • Kuczynski, J., et al. (1983). Disziplinaritat und Interdisjiplinaritat in der wissenschaftlichen Forschung. Deutsche Zeitschrift für Philosophie, 44–71.

    Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.

    Google Scholar 

  • Labarrière, J.-P. (1975). L’Unité Plurielle. Aubier Montaigne.

    Google Scholar 

  • Laitko, H. (1988). On the emergence of scientific disciplines. In T. Hronsjky et al. (Eds.), Scientific knowledge socialized (pp. 213–223). Akadémiai Kiado.

    Google Scholar 

  • Lambert, E. (1981). Vers la Mise en Oeuvre d’un Enseignement Intégré des Sciences au Niveau Secondaire. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. V, pp. 67–74). Unesco.

    Google Scholar 

  • Laurent, C. (2011). Plurality of science and rational integration of knowledge. In O. Pombo, S. Rahman, & J.-M. Torres (Eds.), The unity of science: Essays in the Honor of Otto Neurath. Springer.

    Google Scholar 

  • Lecocq, B. (1982). La Transdisciplinarité Instrumentale. Contribution à l’Introduction de l’Interdisciplinarité dans l’Enseignement Secondaire. Université de L’État de Mons/Mémoire de Licence.

    Google Scholar 

  • Lehmann, W., & Schwartz, G. (1990). Interdisciplinarité. Centre de Recherches Psychopédagogiques.

    Google Scholar 

  • Leibniz. (1677). Preface à la Science Generale. In Opuscules et fragments inédits de Leibniz. Extraits des manuscrits de la Bibliothèque royale de Hannover par Louis Couturat (pp. 155–159). Alcan (1903).

    Google Scholar 

  • Leibniz. (1960). Die Philosophischen Schriften von Gottfried Wilhelm Leibniz. In von Carl Immanuel Gerhardt, 7 vols. Olms.

    Google Scholar 

  • Lemaine, G., et al. (Eds.). (1976). Perspectives on the emergence of scientific disciplines. Monton/Aldine.

    Google Scholar 

  • Lenoir, Y. (1997). Perspectives Curriculaires et Interdisciplinarité: un Essai de Clarification (no. 11). Université de Sherbrooke, Documents du Laridd.

    Google Scholar 

  • Léon, A. (1980). Introduction à l’Histoire des Faits Éducatifs (trad. port. de Manuel Ruas, «Introdução à História da Educação»). Dom Quixote (1983).

    Google Scholar 

  • Lepetit, B. (1990). Propositions pour une Pratique Restrite de l’Interdisciplinarité. Synthese, IV(3), 331–338.

    Google Scholar 

  • Levy, T. (1992). Problemas de Interdisciplinaridade. Ciência, 2(3), 9–11.

    Google Scholar 

  • Long, F. A. (1986). Interdisciplinary problem-oriented research in university. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 271–272). Lomond.

    Google Scholar 

  • Lowy, I. (1992). The strength of loose concepts: Boundary concepts, federative experimental strategies and disciplinary growth: The case of immunology. History of Science, 30(4), 371–396.

    Article  Google Scholar 

  • Lyotard, J.-F. (1979). La Condition Postmoderne. Minuit.

    Google Scholar 

  • Macdonald, W. R. (1986). Characteristics of interdisciplinary research teams. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 395–406). Lomond.

    Google Scholar 

  • Malherbe, J.-F. (1980). Eléments pour une Analyse du Travail Interdisciplinaire. Revue Philosophique de Louvain, 78, 91–98.

    Article  Google Scholar 

  • Mandelbrot, B. (1982). The fractal geometry of nature. Freemen.

    Google Scholar 

  • Marcovich, A., & Shinn, T. (2011). Where is disciplinarity going? Meeting on the borderland. Social Science Information, 50(3–4), 1–25.

    Google Scholar 

  • Marín Ibañez, R. (1978). Interdisciplinariedad y Enseñanza en Equipo. Paraninfo.

    Google Scholar 

  • Masson, E. (1977). Pluridisciplinarité et Vie Collective. L’Éducation, 304, 22–25.

    Google Scholar 

  • Mathesis. (1990). Projecto Mathesis. Ciência Integrada, Interdisciplinaridade e Ensino Integrado das Ciências. Departamento de Educação da FCUL/Projecto Mathesis.

    Google Scholar 

  • Milson, J. L., & Ball, S. E. (1986). Enhancement of learning through integrating science and mathematics. School Science and Mathematics, 860, 489–493.

    Article  Google Scholar 

  • Mitchell, S. D., & Dietrich, M. R. (2006). Integration without unification: An argument for pluralism in the biological sciences. American Naturalist, 168, 73–79.

    Article  Google Scholar 

  • Mittelstrass, J. (1987). Die Stunde der Interdisziplinarität ? In J. Kocka (Ed.), Interdisciplinarität. Praxis-Herausforderung-Ideologie. Frankfurt am Main.

    Google Scholar 

  • Moran, J. (2001). The new critical idiom: Interdisciplinarity. Routledge.

    Google Scholar 

  • Morin, E. (1974). Introduction à la Pensée complexe. ESF Editeur.

    Google Scholar 

  • Morin, E. (1983). O problema Epistemológico da Complexidade. Europa-America.

    Google Scholar 

  • Morris, C. (1969). On the history of the international encyclopedia of unified sciences. In O. Neurath (Ed.), International encyclopedia of unified science (pp. IX–XII). University of Chicago Press.

    Google Scholar 

  • Mulkay, M. J., & Edge, D. O. (1976). Cognitive, technical and social factors in the growth of radio astronomy. In G. Lemaine et al. (Eds.), Perspectives on the emergence of scientific disciplines (pp. 153–186). Mouton/Aldine.

    Chapter  Google Scholar 

  • Müller, M. (1991). On the interdisciplinary genesis of experimental methods in nineteenth-century German psychology. In W. R. Woodward & R. S. Cohen (Eds.), World views and scientific discipline formation (pp. 129–140). Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Nagel, E. (1961). The structure of science. Harcourt, Brace and World.

    Book  Google Scholar 

  • Neurath, O. (1932). Unified Science and Psychology. In B. McGuinness (Ed.), Unified science. The Vienna circle monograph series originally edited by Otto Neurath (pp. 1–23). D. Reidel Publishing Company.

    Google Scholar 

  • Neurath, O. (1936). L’Encycopédie comme modèle. Revue de Synthèse, XII(2), 187–201.

    Google Scholar 

  • Neurath, O. (1937). The departmentalization of unified science (pp. 240–246). Erkenntnis.

    Google Scholar 

  • Neurath, O. (Ed.). (1938a). International encyclopedia of unified science. University of Chicago Press.

    Google Scholar 

  • Neurath, O. (1938b). Unified science and encyclopedia. In O. Neurath (Ed.), International encyclopedia of unified science (pp. 1–27). University of Chicago Press.

    Google Scholar 

  • Neurath, O. (1946). The orchestration of the sciences in the encyclopedism of logical empiricism. Philosophy and Phenomenological Research, VI(4), 496–508.

    Article  Google Scholar 

  • Neurath, O. (1947). Unity of science movement. After six years. Synthese, 5, 77–82.

    Article  Google Scholar 

  • Newell, W. H. (Ed.). (1997). Interdisciplinarity 1997: An anthology of the professional literature. Miami University Press.

    Google Scholar 

  • Nicolescu, B. (1985). Vers une nouvelle transdisciplinarité. In Nous, La particule et le Monde (p. 10). Le Mail, cap.

    Google Scholar 

  • Nicolescu, B. (1996). La Transdisciplinarité. Manifeste. Ed. du Rocher.

    Google Scholar 

  • Nikolaev, G. A. (1971). Intégration des Sciences en URSS. In Unesco (Ed.), New trends in integrated science teaching (Vol. I, pp. 90–92). Unesco.

    Google Scholar 

  • Nubiola, J. (2005), The classification of the sciences and cross-disciplinarity, Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy, Vol. 41, 2, p.271-282.

    Google Scholar 

  • Oppenheim, P., & Putnam, H. (1958). Unity of science as a working hypothesis. Minnesota Studies in the Philosophy of Science, 2, 3–36.

    Google Scholar 

  • Oppenheimer, J. R. (1955). Science and the common understanding (trad. franc de Albert Colnat, «La Science et le Bon Sens»). Gallimard (1955).

    Google Scholar 

  • Palmade, G. (1979). Interdisciplinariedad e Ideologias. Narcea.

    Google Scholar 

  • Parsegian, V. L. (1971). An integrated course in natural science for university students. In Unesco (Ed.), New trends in integrated science teaching (Vol. I, pp. 294–300). Unesco.

    Google Scholar 

  • Parthey, V. E. (1983). Interdisjiplinaritat und interdisjiplinare forschergruppen. Deutsche Zeitschrift für Philosophie, 31-43.

    Google Scholar 

  • Paviani, J. (2003). Disciplinaridade e interdisciplinaridade. Revista de Estudos Criminais, III(12), 59–85.

    Google Scholar 

  • Paviani, J., & Botomé, S. P. (1993). Interdisciplinaridade, Disfunções Conceptuais e Enganos Académicos. EDUCS.

    Google Scholar 

  • Peláez, A., & Suarez, R. (Eds.). (2010). Observaciones Filosoficas en torno a la Interdisciplinaridade. Antropos Editorial.

    Google Scholar 

  • Pellerey, M. (1976). L’ Insegnamento Integrato delle Scienze nella Scuola Primaria. Orientamenti Pedagogi, 23(4), 136.

    Google Scholar 

  • Pestre, D. (2013). Contre-science: Politiques et Savoirs des Sociétés Contemporaines. Seuil.

    Book  Google Scholar 

  • Petrie, H. G. (1986). Do you see what I see? The epistemology of interdisciplinary inquiry. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 115–130). Lomond.

    Google Scholar 

  • Piaget, J. (1972). L’ Épistémologie des Rélations Interdisciplinaires. In CERI (Ed.), L’Interdisciplinarité. Problèmes d’Enseignement et de Recherche dans les universités (pp. 131–144). OCDE.

    Google Scholar 

  • Pietarinen, A.-V. (2011). Principles and practices of Neurath’s picture language. In J. Symons, O. Pombo, S. Rahman, & J. M. Torres (Eds.), Otto Neurath and the unity of science (pp. 71–82). Springer.

    Chapter  Google Scholar 

  • Poincare, H. (1893). Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars.

    Google Scholar 

  • Polanco, X. (1990). Naissance et Développement de la Science-Monde. Production et Reproduction des Communautés Scientifiques en Europe et en Amérique Latine. La Découverte/Conseille de l’ Europe/Unesco.

    Google Scholar 

  • Pombo, O. (1987). Leibniz and the problem of a universal language. Nodus Publikationen.

    Google Scholar 

  • Pombo, O. (2002a). A Escola, a Recta e o Círculo. Relógio d’ Água.

    Google Scholar 

  • Pombo, O. (2002b). Leibniz and the encyclopedic project. In Actas del Congresso Internacional Ciência, Tecnologia Y Bien Comun: La Catualidad de Leibniz (pp. 267–278). Editorial de la Universidas Politecnica de Valencia.

    Google Scholar 

  • Pombo, O. (2004). Interdisciplinaridade: Ambições e Limites. Relógio d’Agua.

    Google Scholar 

  • Pombo, O. (2005). Interdisciplinaridade e Integração dos saberes. LIINC em Revista, 1(1), 3–15.

    Google Scholar 

  • Pombo, O. (2006a). Práticas Interdisciplinares. In Sociologias, Revista do Instituto de Filosofia e Ciências Humanas (Vol. VIII, no 15, pp. 208–249). Universidade Federal do Rio Grande do Sul, Brasil.

    Google Scholar 

  • Pombo, O. (2006b). A Ciência e as Ciências. In Encontro de Saberes (pp. 515–532). Fundação Calouste Gulbenkian.

    Google Scholar 

  • Pombo, O. (2006c). Enciclopédia e Hipertexto. O Projecto. In O. Pombo, A. Guerreiro, & A. F. Alexandre (Eds.), Enciclopédia e Hipertexto (pp. 180–193). Editora Duarte Reis.

    Google Scholar 

  • Pombo, O. (2011a). Neurath and the encyclopaedias project of unity of science. In J. Symons, O. Pombo, S. Rahman, & J. M. Torres (Eds.), Otto Neurath and the unity of science (pp. 59–70). Springer.

    Chapter  Google Scholar 

  • Pombo, O. (2011b). Unidade da Ciência. Programas, Figuras e Metáforas. CFCUL/Gradiva.

    Google Scholar 

  • Pombo, O. (2013). Epistemología de la interdisciplinariedad. La construcción de un nuevo modelo de comprensión. Interdisciplina, 1(1), 21–50.

    Google Scholar 

  • Pombo, O. (2014). Unity of science and encyclopedia: From the idea to the configurations. In D. Riesenfeld & G. Scarafile (Eds.), Perspectives on theory of controversies and the ethics of communication. Explorations of Marcelo Dascal’s contributions to philosophy (Series: Logic, argumentation & reasoning) (pp. 157–172). Springer.

    Google Scholar 

  • Prigogine, I. (2009). Ciência, Razão e Paixão (Portuguese translation by Edgar A. Carvalho e M. da Conceição de Almeida). Editora livraria da Fisica.

    Google Scholar 

  • Prigogine, I., & Stengers, I. (1979). La Nouvelle Alliance. Métamorphose de la science. Gallimard.

    Google Scholar 

  • Pring, R. (1973). Curriculum integration. In R. S. Peters (Ed.), The philosophy of education (pp. 123–149). Oxford University Press.

    Google Scholar 

  • Pursová, J. (1984). Contemporary system concepts and the integration of scientific knowledge. In Arkadij et al. (Eds.), Integration of science and the systems approach (pp. 195–212). Elsevier.

    Google Scholar 

  • Reay, J. (1990). Bibliography in integrated science teaching (trad. port. de Mariana P. Pereira, «Bibliografia sobre Ensino de Ciência Integrada»). Unesco/INISTE.

    Google Scholar 

  • Rege Colet, N. (1997). Quelle Définition de l’Interdisciplinarité pour Penser la Collaboration Interprofessionnelle? École d’Études Sociales et Pédagogiques, Dossier de la Journée Interprofessionnelle.

    Google Scholar 

  • Repko, A. F. (2012). Interdisciplinarity. Process and theory. Sage Publications.

    Google Scholar 

  • Rescher, N. (2005). Pluralism: Against the demand for consensus. Oxford University Press.

    Google Scholar 

  • Resweber, J.-P. (1981). La Méthode Interdisciplinaire. Presses Universitaires de France.

    Book  Google Scholar 

  • Rickman, H. P. (1967). Interdisciplinary co-operation. In H. P. Rickman (Ed.), Understanding and the human studies (pp. 121–130). Heinemann.

    Google Scholar 

  • Rossini, F. A. (1986a). Interdisciplinary integration within technology assessments. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 355–378). Lomond.

    Google Scholar 

  • Rossini, F. A. (1986b). Crossdisciplinarity in the biomedical sciences: A preliminary analysis of anatomy. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 205–214). Lomond.

    Google Scholar 

  • Ruhla, C. (1980). Comment Faire de la Pluridisciplinarité. Bulletin de l’union des Physiciens, 620, 409–437.

    Google Scholar 

  • Russo, F. (1973). La Pluridisciplinaridad I e II. Razon Fé, 904 e 5, 425–435, 561–567.

    Google Scholar 

  • Rutherford, J. (1971). Harvard project physics: An integrated science course. In Unesco (Ed.), New trends in integrated science teaching (Vol. I, pp. 284–289). Unesco.

    Google Scholar 

  • Rutherford, J., & Gardner, M. (1971). Selected examples of some recently developed integrated science courses. In Unesco (Ed.), New trends in integrated science teaching (Vol. I, pp. 304–316). Unesco.

    Google Scholar 

  • Sauzet, R. (2017). La Pluralité Scientifique en Action – le Cas du LabEx IMU. PhD dissertation at the Lyon University le 24th April, 2017.

    Google Scholar 

  • Searle, J. R. (1997). The mystery of consciousness. Basic Books.

    Google Scholar 

  • Shapere, D. (1977). Unification and fractionation in science: Significance and prospects. In The search for absolute values: Harmony among the sciences (Proceedings of the Vth international conference on the unity of sciences, November, 26–28, 1976) (Vol. I, pp. 867–880). The International Cultural Foundation Press.

    Google Scholar 

  • Shapere, D. (1984a). Scientific theories and their domains. In R. Cohen & M. Wartofsky (Eds.), Reason and the search for knowledge: Investigations on the philosophy of science (pp. 273–319). D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Shapere, D. (1984b). Remarks on the concepts of domain and field. In R. Cohen & M. Wartofsky (Eds.), Reason and the search for knowledge: Investigations in the philosophy of science (pp. 320–324). D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Sherif, M. (1979). Crossdisciplinary coordination in the social sciences. In J. J. Kockelmans (Ed.), Interdisciplinarity and higher education. The Pennsylvania State University Press.

    Google Scholar 

  • Sherif, M., & Sherif, C. (Eds.). (1969). Interdisciplinary relationship in the social sciences. Aldine.

    Google Scholar 

  • Shinn, T. (1982). Scientific disciplines and organisational specificity. In N. Elias, H. Martins, & R. D. Whitley (Eds.), Scientific establishments and hierarchies (pp. 239–264). Reidel.

    Chapter  Google Scholar 

  • Shinn, T., & Ragouet, P. (2005). Les controverses de la Science: Pour une Sociologie Transversaliste des Activités Scientifiques. Raison d’Agir.

    Google Scholar 

  • Showalter, V. (1975). Rationale for an unbound science curriculum. School Science and Mathematics, 75(1), 15–21.

    Article  Google Scholar 

  • Showalter, V. (1976). Caractéristiques Souhaitables des Maîtres de Sciences Intégrées. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. III, pp. 29–34). Unesco.

    Google Scholar 

  • Showalter, V. (1981). Pour un Enseignement Unitaire des Sciences. In Unesco (Ed.), Tendances Nouvelles de l’Enseignement Intégré des Sciences (Vol. V, pp. 21–24). Unesco.

    Google Scholar 

  • Sinacoeur, M.-A. (1992). Quelques Réflexions sur l’Interdisciplinarité? In Portella (Ed.), Entre Savoirs. L’Interdisciplinarité en Acte: Enjeux, Obstacles, Perspectives (pp. 21–23). Erès.

    Google Scholar 

  • Sklar, L. (1974). The evolution of the problem of the unity of science. Boston Studies in the Philosophy of Science, XI, 535–545.

    Article  Google Scholar 

  • Smirnov, S. N. (1984). The main forms of interdisciplinary development of modern science. In Ursul & Z. Javurek (Eds.), Integration of science and the systems approach (pp. 65–83). Elsevier.

    Google Scholar 

  • Snow, C. P. (1959). The two cultures and a second look. An expanded version of the two cultures and the scientific revolution. Cambridge University Press (1964).

    Google Scholar 

  • Solla Price, D. J. (1963). Little science, big science. Columbia University Press.

    Book  Google Scholar 

  • Souchon, J. (1975). Une Expérience Originale à Castelnaudary: un Enseignement Intégré de l’Histoire, de la Géographie, et des Sciences Économiques. Le Courrier de l’ Éducation, 12, 6–7.

    Google Scholar 

  • Stengers, I. (Org.). (1987). D’Une Science à l’ Autre. Des Concepts Nomades. Seuil.

    Google Scholar 

  • Stucki, J. C. (1986). A goal-oriented pharmaceutical research and development organization: An eleven year experience. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 323–337). Lomond.

    Google Scholar 

  • Suppes, P. (1978). The plurality of science. PSA, II, 3–16.

    Google Scholar 

  • Swanson, E. R. (1986). Working with other disciplines. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 241–252). Lomond.

    Google Scholar 

  • Swoboda, W. W. (1979). Disciplines and interdisciplinarity: A historical perspective. In J. J. Kockelmans (Ed.), Interdisciplinarity and higher education. The Pennsylvania State University Press.

    Google Scholar 

  • Symons, J., Pombo, O., Rahman, S., & Torres, J. M. (Eds.). (2011). Otto Neurath and the unity of science. Springer.

    Google Scholar 

  • Székely, D. L. (1969). A new image of unified science. Logique et Analyse, 12, 382–392.

    Google Scholar 

  • Taylor, J. B. (1986). Building an interdisciplinary team. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 141–154). Lomond.

    Google Scholar 

  • Thagard, P. (1997). Collaborative knowledge. Noûs, 31, 242–261.

    Article  Google Scholar 

  • Thagard, P. (2006). How to collaborate: Procedural knowledge in the cooperative development of science. Southern Journal of Philosophy, 44, 177–196.

    Article  Google Scholar 

  • Thier, H. D. (1975). Contenu et Approches des Programmes d’Enseignement Intégré des Sciences aux Niveaux Primaire et Secondaire. In Unesco (Ed.), Tendances nouvelles de l’Enseignement Intégré des Sciences (Vol. II, pp. 49–64). Unesco.

    Google Scholar 

  • Thom, R. (1986). La Méthode Expérimentale: un Mythe des Épistémologues et des Savants? In J. Hamburger (Ed.), La Philosophie des Sciences Aujourd’hui (pp. 7–20). Gauthier-Villars.

    Google Scholar 

  • Thom, R. (1990). Vertus et Dangers de l’Interdisciplinarité. In R. Thom (Ed.), Apologie du Logos (pp. 636–643). Hachette.

    Google Scholar 

  • Thuillier, P. (1972). Jeux et Enjeux de la Science. Essais d’Épistémologie Critique. Robert Laffont.

    Google Scholar 

  • Turner, B. S. (2000). What are disciplines? And How is interdisciplinarity different? In P. Weingart & N. Stehr (Eds.), Practising interdisciplinarity (pp. 46–65). University of Toronto Press.

    Chapter  Google Scholar 

  • Turner, B. S. (2006). Discipline. Theory, Culture and Society, 23(2–3), 183–186.

    Article  Google Scholar 

  • Uria, É. F. (1977). La Intregración Didáctica de las Ciencias de la Naturaleza y las Matemáticas. Educadores, 95, 695–707.

    Google Scholar 

  • Vertinsky, I., & Vertinsky, P. (1990). Resilience of interdisciplinary research organizations. In P. H. Birnbaum-More, F. A. Rossini, & D. R. Baldwin (Eds.), International research management studies in interdisciplinary methods from business, government, and academia. Oxford University Press.

    Google Scholar 

  • Vignoli, S. (1973). La Psicologia dell’ Interdisciplinaritá. Ricerche Didattiche, 1, 367–375.

    Google Scholar 

  • von Bertalanffy, L. (1951). General system theory. A new approach to unity of science. Human Biology, 23, 303–361.

    Google Scholar 

  • von Bertalanffy, L. (1956). General systems theory. In L. von Bertalanffy (Ed.), General systems. Yearbook of the society for the advancement of general systems theory (Vol. I, pp. 1–10). University of Southern California Press.

    Google Scholar 

  • UNESCO. (1971). New trends in integrated science teaching (Vol. I, pp. 261–269). Unesco.

    Google Scholar 

  • Warwick, D. (1973). Integrated studies in the secondary school. University of London Press.

    Google Scholar 

  • Weinberg, A. M. (1967). Reflexions on big science. The M.I.T. Press.

    Google Scholar 

  • Weingart, P., & Stehr, N. (Eds.). (2000). Practising interdisciplinarity. University of Toronto Press.

    Google Scholar 

  • Whitehead, A. N. (1967). Science and the modern world. Free Press (1925).

    Google Scholar 

  • Whitley, R. (1973). Cognitive and social institutionalization of scientific specialties and research areas. In R. Whitley (Ed.), Social process of scientific development (pp. 69–95). Routledge and Kegan Paul.

    Google Scholar 

  • Whitley, R. (1976). Umbrella and polytheistic scientific disciplines and their elites. Social Studies of Science, 6, 471–497.

    Article  Google Scholar 

  • Whitley, R. (1979). The fragmentation of the sciences: remarks on the decline of university disciplines as units of knowledge production and evaluation. In W. Callebant, M. De Mey, R. Pinxten, & F. Vandamme (Eds.), Theory of knowledge and science policy (pp. 306–314). Communication and Cognition.

    Google Scholar 

  • Whitley, R. (1980). The context of scientific investigation. In K. Knorr et al. (Eds.), The social process of scientific investigation (pp. 297–321). D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Whitley, R. (2000). The intellectual and social organisation of the sciences. Oxford University Press.

    Google Scholar 

  • Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. The Technology Press of MIT (1967).

    Google Scholar 

  • Wilbanks, T. (1986). Communications between hard and soft sciences. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 131–140). Lomond.

    Google Scholar 

  • Wilkinson, J. (1961). The concept of information and the unity of science. Philosophy of Science, 28, 406–413.

    Article  Google Scholar 

  • Williams, I. W. (1975). Méthodes Pédagogiques de l’Enseignement Intégré des Sciences dans les Premier et Seconde Degrés. In Unesco (Ed.), Tendances nouvelles de l’Enseignement Intégré des Sciences (Vol. II, pp. 65–82). Unesco.

    Google Scholar 

  • Wilpert, B. (1986). Meshing interdisciplinarity with internationality. In D. E. Chubin, A. L. Porter, F. A. Rossini, & T. Connolly (Eds.), Interdisciplinary analysis and research (pp. 167–178). Lomond.

    Google Scholar 

  • Wilson, E. O. (1998). Consilience. The unity of knowledge. Little, Brown Book Group.

    Google Scholar 

  • Wray, K. B. (2002). The epistemic significance of collaborative research. Philosophy of Science, 69(1), 150–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pombo, O. (2023). The Fundamental Cognitive Destiny of Interdisciplinarity. In: Pombo, O., Gärtner, K., Jesuíno, J. (eds) Theory and Practice in the Interdisciplinary Production and Reproduction of Scientific Knowledge. Logic, Argumentation & Reasoning, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-20405-0_1

Download citation

Publish with us

Policies and ethics