Skip to main content

Development of a Database to Simulate and Adapt Compliant Mechanisms to a Given Characteristic for Improving Energy Efficiency of a Walking Robot

  • Conference paper
  • First Online:
Microactuators, Microsensors and Micromechanisms (MAMM 2022)

Abstract

Compliant mechanisms with variable geometric parameters are investigated for the application in a bipedal robot to improve its walking efficiency. These mechanisms have nonlinear torque-angle characteristics and act like torsion springs to change the systems free oscillation frequency. High energy efficiency is achieved if the free oscillation frequency matches the step frequency, meaning the that the robot walks in resonance. For this purpose, the desired characteristic of the optimized elastic coupling is identified via optimization. Then, a database is developed, which consists of boundary conditions and beam elements. In this paper, there are three boundary conditions and three beam elements for demonstration purpose. To simulate a large number of compliant mechanisms with different characteristics, two boundary conditions and a beam element can be combined. The boundary conditions serve as bearing types to connect the beam element to the thighs of a robot. The large deformation behavior is assumed to be simulated by the Euler-Bernoulli beam theory, which is validated by FEM models. Thus, the desired characteristic from the proceeding optimization process is realized by a specific compliant mechanism.

Supported by the German Research Foundation (DFG) grant number FI 1761/4-1 and ZE 714/16-1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfattani, R., Yunus, M., Alamro, T., Alnaser, I.: Linkage factors optimization of multi-outputs of compliant mechanism using response surface. Int. J. Nonlinear Anal. Appl. 12(1), 59–74 (2021). https://doi.org/10.22075/ijnaa.2021.4658

  2. Bilancia, P., Berselli, G.: An overview of procedures and tools for designing nonstandard beam-based compliant mechanisms. Comput.-Aided Des. 134, 103001 (2021). ISSN: 0010-4485. https://doi.org/10.1016/j.cad.2021.103001

  3. Bodkhe, S., Ananthasuresh, G.K.: Multi-patch isogeometric analysis of planar compliant mechanisms. In: Mechanism and Machine Science, pp. 671–690. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-4477-4

  4. Cao, L., Dolovich, A.T., Chen, A., Zhang, W.: Topology optimization of efficient and strong hybrid compliant mechanisms using a mixed mesh of beams and flexure hinges with strength control. Mech. Mach. Theory 121, 213–227 (2018). ISSN: 0094-114X. https://doi.org/10.1016/j.mechmachtheory.2017.10.022

  5. Choi, M.-J., Cho, S.: Isogeometric optimal design of compliant mechanisms using finite deformation curved beam built-up structures. J. Mech. Des. 142(8) (2020). ISSN: 1050-0472. https://doi.org/10.1115/1.4043585

  6. Chu, S., Gao, L., Xiao, M., Luo, Z., Li, H.: Stress-based multi-material topology optimization of compliant mechanisms. Int. J. Numer. Methods Eng. 113(7), 1021–1044 (2018). ISSN: 00295981. https://doi.org/10.1002/nme.5697

  7. Da Silva, G. A., Beck, A.T., Sigmund, O.: Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. Comput. Methods Appl. Mech. Eng. 365, 112972 (2020). ISSN: 0045-7825. https://doi.org/10.1016/j.cma.2020.112972

  8. Da Silva, G. A., Beck, A.T., Sigmund, O.: Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness. Comput. Methods Appl. Mech. Eng. 354, 397–421 (2019). ISSN: 0045-7825. https://doi.org/10.1016/j.cma.2019.05.046

  9. Danun, A.N., Palma, P.D., Klahn, C., Meboldt, M.: Building block synthesis of self-supported three-dimensional compliant elements for metallic additive manufacturing. J. Mech. Des. 143(5) (2021). ISSN: 1050-0472. https://doi.org/10.1115/1.4048220

  10. Delissen, A.A., Radaelli, G., Herder, J.L.: Design and optimization of a general planar zero free length spring. Mech. Mach. Theory 117, 56–77 (2017). ISSN: 0094-114X. https://doi.org/10.1016/j.mechmachtheory.2017.07.002

  11. Gallego, J.A., Herder, J.: Synthesis methods in compliant mechanisms: an overview. In: American Society of Mechanical Engineers Digital Collection, pp. 193–214 (2010). https://doi.org/10.1115/DETC2009-86845

  12. Gandhi, I., Zhou, H.: Synthesizing constant torque compliant mechanisms using precompressed beams. J. Mech. Des. 141(1) (2019). ISSN: 1050-0472. https://doi.org/10.1115/1.4041330

  13. Hampali, S., Pai, S.A., Ananthasuresh, G.K.: A tunable variable-torque compliant hinge using open-section shells. J. Mech. Robot. 12(6) (2020). ISSN: 1942-4302. https://doi.org/10.1115/1.4047440

  14. Howell, L.L., Magleby, S.P., Olsen, B.M. (eds.): Handbook of Compliant Mechanisms. Wiley, Chichester (2013). ISBN: 9781119953456. https://doi.org/10.1002/9781118516485

  15. Ibrahim, A., Warsame, A.A., Pervaiz, S.: Finite element (FE) assisted investigation of a compliant mechanism made of various polymeric materials. Mater. Today: Proc. 28, 1181–1187 (2020). ISSN: 2214-7853. https://doi.org/10.1016/j.matpr.2020.01.105

  16. Kalpathy Venkiteswaran, V., Su, H.-J.: Pseudo-rigid-body models of initially-curved and straight beams for designing compliant mechanisms. In: American Society of Mechanical Engineers Digital Collection (2017). https://doi.org/10.1115/DETC2017-67431

  17. Kalpathy Venkiteswaran, V.K., Su, H.-J.: A versatile 3R pseudo-rigid-body model for initially curved and straight compliant beams of uniform cross section. J. Mech. Des. 140(9) (2018). ISSN: 1050-0472. https://doi.org/10.1115/1.4040628

  18. Khoramshahi, M., Nasiri, R., Shushtari, M., Ijspeert, A.J., Ahmadabadi, M.N.: Adaptive natural oscillator to exploit natural dynamics for energy efficiency. Robot. Auton. Syst. 97, 51–60 (2017). https://doi.org/10.1016/j.robot.2017.07.017

    Article  Google Scholar 

  19. Kuppens, P.R., Bessa, M.R., Herder, J.L., Hopkins, J.B.: Monolithic binary stiffness building blocks for mechanical digital machines. Extreme Mech. Lett. 42, 101120 (2021). ISSN: 2352-4316. https://doi.org/10.1016/j.eml.2020.101120

  20. Liang, R., Xu, G., Li, M., Bo, H., Khalique, U.: Fusing topology optimization and pseudo-rigid-body method for the development of a finger exoskeleton. IEEE Robot. Autom. Lett. 1 (2021). ISSN: 2377-3766. https://doi.org/10.1109/lra.2021.3114418

  21. Lieu, Q.X., Lee, J.: Multiresolution topology optimization using isogeometric analysis. Int. J. Numer. Methods Eng. 112(13), 2025–2047 (2017). ISSN: 00295981. https://doi.org/10.1002/nme.5593

  22. Luo, Y., Romer, U.J., Fidlin, A.: The influence of ground inclination on the energy efficiency of a bipedal walking robot. PAMM 20(1), e202000142 (2021)

    Google Scholar 

  23. Luo, Y., Romer, U.J., Zentner, L., Fidlin, A.: Improving energy efficiency of a Bipedal Walker with optimized nonlinear elastic coupling. In: Advances in Nonlinear Dynamics. Springer Nature, Switzerland (2021). https://doi.org/10.1007/978-3-030-81166-2_23

  24. Mogensen, P.K., et al.: JuliaNLSolvers/NLsolve.jl: v4.5.1. Version v4.5.1. (2020). https://doi.org/10.5281/zenodo.4404703

  25. Murphy, M.D., Midha, A., Howell, L.L.: The topological synthesis of compliant mechanisms. Mech. Mach. Theory 31(2), 185–199 (1996). ISSN: 0094-114X

    Google Scholar 

  26. Nasiri, R., Khoramshahi, M., Shushtari, M., Ahmadabadi, M.N.: Adaptation in variable parallel compliance: towards energy efficiency in cyclic tasks. IEEE/ASME Trans. Mechatron. 22(2), 1059–1070 (2016)

    Google Scholar 

  27. Pan, J., Zhang, Y., Fu, Z., Shen, L.: Stiffness modelling of flexible support module for large-aperture laser transmission unit. J. Phys.: Conf. Ser. 2113(1), 012069 (2021). ISSN: 1742-6596. https://doi.org/10.1088/1742-6596/2113/1/012069

  28. Qiu, C., Dai, J.S.: Large deformation analysis of compliant parallel mechanisms. In: Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach, pp. 121–145. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48313-5_8

  29. Racu, C.M., Doroftei, I.: Compliant mechanism for ankle rehabilitation device; Part I: modelling and design. IOP Conf. Ser. Mater. Sci. Eng. 444(8), 052014 (2018). ISSN: 1757-899X. https://doi.org/10.1088/1757-899x/444/5/052014

  30. Radaelli, G.: Synthesis of Mechanisms with Prescribed Elastic Load-Displacement Characteristics. Delft University of Technology (2017). https://doi.org/10.4233/uuid:d518b379-462a-448f-83ef-5ba0e761c578

  31. Richiedei, D., Trevisani, A.: Optimization of the energy consumption through spring balancing of servo-actuated mechanisms. J. Mech. Des. 142(1) (2020)

    Google Scholar 

  32. Scalera, L., Palomba, I., Wehrle, E., Gasparetto, A., Vidoni, R.: Natural motion for energy saving in robotic and mechatronic systems. Appl. Sci. 9(17) (2019). https://doi.org/10.3390/app9173516

  33. Soek, T.: Spatial Flexure Elements in a Compliant Motion Stage (2020)

    Google Scholar 

  34. Sun, P., Li, Y., Chen, K., Zhu, W., Zhong, Q., Chen, B.: Generalized kinematics analysis of hybrid mechanisms based on screw theory and Lie Groups Lie Algebras. Chin. J. Mech. Eng. 34(1), 1–14 (2021). https://doi.org/10.1186/s10033-021-00610-2

    Article  Google Scholar 

  35. Synthesis method of two translational compliant mechanisms with redundant actuation. Mech. Sci. 12 (2), 983–995 (2021). ISSN: 2191-9151. https://doi.org/10.5194/ms-12-983-2021

  36. Thanaki, M., Zhou, H.: Synthesizing bidirectional constant torque compliant mechanisms using precompressed beams. In: American Society of Mechanical Engineers Digital Collection (2019). https://doi.org/10.1115/IMECE2018-86469

  37. Tran, N.T., Dao, T.-P.: Statics analysis and optimization design for a fixed-guided beam flexure. J. Adv. Eng. Comput. 4(2), 125 (2020). ISSN: 1859-2244. https://doi.org/10.25073/jaec.202042.276

  38. Tschiersky, M., Hekman, E.E.G., Brouwer, D.M., Herder, J.L.: Gravity balancing flexure springs for an assistive elbow orthosis. IEEE Trans. Med. Robot. Bionics 1(3), 177–188 (2019). ISSN: 2576-3202. https://doi.org/10.1109/tmrb.2019.2930341

  39. Tsitouras, C.: Runge-Kutta pairs of order 5(4) satisfying only the first column simplifying assumption. Comput. Math. Appl. 62(2), 770–775 (2011)

    Google Scholar 

  40. Wu, Z., Bandara, D., Kiguchi, K., Arata, J.: Design strategy for a surgical manipulator based on a compliant mechanism: rigidity and range of motion: finding the optimized balance. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE (2019). https://doi.org/10.1109/robio49542.2019.8961727

  41. Xu, H., Gan, J., Zhang, X.: A generalized pseudo-rigid-body PPRR model for both straight and circular beams in compliant mechanisms. Mech. Mach. Theory 154, 104054 (2020). ISSN: 0094-114X. https://doi.org/10.1016/j.mechmachtheory.2020.104054

  42. Zentner, L., Lins, S.: Compliant Systems: Mechanics of Elastically Deformable Mechanisms, Actuators and Sensors. Walter de Gruyter GmbH & Co KG, Berlin (2019)

    Book  Google Scholar 

  43. Zhang, J., Guo, H.-W., Wu, J., Kou, Z.-M., Eriksson, A.: Design of flexure revolute joint based on compliance and stiffness ellipsoids. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 095441002110169 (2021). https://doi.org/10.1177/09544100211016978

  44. Zhang, X.: Topology Optimization of Compliant Mechanisms. Springer Nature, Singapore (2018). ISBN: 9789811304323

    Google Scholar 

  45. Zhu, B., Zhang, X., Zhang, H., Liang, J., Zang, H., Li, H., Wang, R.: Design of compliant mechanisms using continuum topology optimization: a review. Mech. Mach. Theory 143, 103622 (2020). ISSN: 0094-114X. https://doi.org/10.1016/j.mechmachtheory.2019.103622

  46. Zirkel, M., Luo, Y., Fidlin, A., Zentner, L.: Synthese eines Nachgiebigen Systems mit gegebener Kennlinie. In: Siebte IFToMM D-A-CH Konferenz 2021: 18./19. February 2021, Online-Konferenz (2021). https://doi.org/10.17185/duepublico/74063

  47. Zirkel, M., Luo, Y., Romer, U.J., Fidlin, A., Zentner, L.: Parameter study of compliant elements for a Bipedal Robot to increase its walking efficiency. In: Conference on Microactuators and Micromechanisms, pp. 58–75. Springer, Cham (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten Zirkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zirkel, M., Luo, Y., Römer, U.J., Fidlin, A., Zentner, L. (2023). Development of a Database to Simulate and Adapt Compliant Mechanisms to a Given Characteristic for Improving Energy Efficiency of a Walking Robot. In: Pandey, A.K., Pal, P., Nagahanumaiah, Zentner, L. (eds) Microactuators, Microsensors and Micromechanisms. MAMM 2022. Mechanisms and Machine Science, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-031-20353-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20353-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20352-7

  • Online ISBN: 978-3-031-20353-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics