Skip to main content

Rotor Blade Structure

  • Chapter
  • First Online:
Wind Power Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 687 Accesses

Abstract

The rotor blade is the key component of a wind turbine generator (WTG) and converts the energy of the wind into a mechanically useful form of energy. It represents a significant cost factor in the overall context of the turbine and at the same time has an enormous impact on the yield of the turbine. This chapter deals first with the normative requirements for the development and the verification of the serviceability and operational reliability of rotor blade structures. It then considers the loads acting on the rotor blade and the properties of the materials used. Furthermore, it addresses structural models for the analysis of blades and moreover discusses the design criteria for the topology and conventional manufacturing processes as well as deviations which occur. In addition, it considers the costs as part of the design process and their impact on the form of the blade structure, since the minimisation of the Levelised Cost of Energy is the main optimisation target when designing WTGs. Finally, it discusses blade materials from a sustainable development point of view. The chapter aims to provide a well-founded overview of a range of topics which are of relevance for the engineer working with the blade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatures

  1. Aero Dynamic Consult: ADCoS. https://www.aero-dynamik.de/Simulation_82.html

  2. Ansys: Mechanical APDL. https://www.ansys.com/

  3. Antoniou A, Rosemeier M, Tazefidan K, Krimmer A, Wolken-Möhlmann G (2020) Impact of site-specific thermal residual stress on the fatigue of wind-turbine blades. AIAA J 58(11):4781–4793. https://doi.org/10.2514/1.J059388

  4. Basquin OH (1910) The exponential law of endurance tests. In: Proceedings of the thirteenth annual meeting, vol 10. American Society for Testing Materials, Atlantic City, New Jersey, USA, pp. 625–630. https://pdfcoffee.com/basquin-the-exponential-law-of-endurance-testspdf-pdf-free.html

  5. Beelitz T, Hadzhiyski A, Kenfack R, Marzik J, Popiela B, Sahr R, Blümel T, Krimmer A (2021) Untersuchung des Torsionsverhaltens dünnwandiger, geschlossenzelliger Profilträger mit inhomogenem Querschnitt. In: Deutscher Luft- und Raumfahrtkongress 2021. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth. https://doi.org/10.25967/550319

  6. de Beus N, Carus M, Barth M (2019) Carbon footprint and sustainability of different natural fibres for biocomposites and insulation material. Tech. rep., Nova-Institute GmbH, Hürth, Germany. http://eiha.org/media/2019/03/19-03-13-Study-Natural-Fibre-Sustainability-Carbon-Footprint.pdf

  7. Bir GS (2001) Computerized method for preliminary structural design of composite wind turbine blades. J Solar Energy Eng 123(4):372–381. https://doi.org/10.1115/1.1413217

  8. Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289. https://doi.org/10.1016/j.compstruct.2012.05.002

  9. Bortolotti P, Bottasso CL, Croce A, Sartori L (2019) Integration of multiple passive load mitigation technologies by automated design optimization-the case study of a medium-size onshore wind turbine. Wind Energy 22(1):65–79. https://doi.org/10.1002/we.2270

  10. Bosschers J (1996) Modelling of rotational effects with a 2-d viscous-inviscid interaction code. Tech. Rep. 96521. NLR—Netherlands Aerospace Centre, Amsterdam, the Netherlands

    Google Scholar 

  11. Bundeszentrale für politische Bildung: Auf Endlagersuche. Der deutsche Weg zu einem sicheren Atommülllager (2020). https://www.bpb.de/gesellschaft/umwelt/endlagersuche/315473/einleitung

  12. Castro SGP, Rosemeier M (2019) Comput Mech (Compmech). https://github.com/mrosemeier/compmech

  13. CEN: Eurocode: basis of structural design; EN 1990:2002 + A1:2005 + A1:2005/AC:2010. European Committee for Standardization (2010)

    Google Scholar 

  14. Cesnik CE, Hodges DH (1997) VABS: a new concept for composite rotor blade cross-sectional modeling. J Am Helicopter Soc 42(1):27–38. https://doi.org/10.4050/JAHS.42.27

  15. Chen G, Wen J (2012) Load performance of large-scale rolling bearings with supporting structure in wind turbines. J Tribol 134(4):041105. https://doi.org/10.1115/1.4007349

  16. Chou P, Carleone J, Hsu C (1972) Elastic constants of layered media. J Compos Mater 6(1):80–93. https://doi.org/10.1177/002199837200600107

  17. Cunliffe A, Jones N, Williams P (2003) Pyrolysis of composite plastic waste. Environ Technol 24(5):653–663. https://doi.org/10.1080/09593330309385599

  18. DAkkS: Datenbank der akkreditierten Stellen (2021). https://www.dakks.de/de/akkreditierte-stellen-suche.html

  19. Danmarks Tekniske Universitet (DTU): Ellipsys. https://the-numerical-wind-tunnel.dtu.dk/EllipSys

  20. Danmarks Tekniske Universitet (DTU): HAWC2. https://www.hawc2.dk

  21. Dassault Systèmes: Simpack. https://www.3ds.com/products-services/simulia/products/simpack/product-modules/wind-modules/

  22. Det Norske Veritas (DNV): Bladed. https://www.dnv.com/services/renewables-engineering-software-138662

  23. DGfM: MauerWerk - Das Lehrportal - 3.1 Sicherheitskonzept. https://www.mauerwerksbau-lehre.de/vorlesungen/3-sicherheitskonzept-und-einwirkungen/31-sicherheitskonzept/311-allgemeine-grundlagen

  24. DIBt: Richtlinie für Windenergieanlagen - Einwirkungen und Standsicherheitsnachweise für Turm und Gründung - Stand: Oktober 2012 - Korrigierte Fassung März 2015. Mittelungen des DIBt, Technische Regel, Referat I 8, Bautechnisches Prüfamt, Grundlagen der Standsicherheit (2015). https://www.dibt.de/fileadmin/dibt-website/Dokumente/Referat/I8/Windenergieanlagen_Richtlinie_korrigiert.pdf

  25. DNV: DNV-DS-J102 (2010) Design and manufacture of wind turbine blades, offshore and onshore wind turbines. https://rules.dnv.com/docs/pdf/dnvpm/codes/docs/2010-11/DS-J102.pdf

  26. DNV GL: DNVGL-ST-0376 (2015) Rotor blades for wind turbines. https://www.dnv.com/energy/standards-guidelines/dnv-st-0376-rotor-blades-for-wind-turbines.html

  27. DNV GL: DNVGL-SE-0441 (2016) Type and component certification of wind turbines. https://www.dnv.com/energy/standards-guidelines/dnv-se-0441-type-and-component-certification-of-wind-turbines.html

  28. Drela M (1989) XFOIL: an analysis and design system for low Reynolds number airfoils. In: Mueller TJ (ed) Low Reynolds number aerodynamics. Springer, Berlin, Heidelberg, pp 1–12. https://doi.org/10.1007/978-3-642-84010-4_1

  29. Dubey PK, Mahanth SK, Dixit A, Changmongkol S (2020) Recyclable epoxy systems for rotor blades. In: IOP conference series: materials science and engineering, vol 942. IOP Publishing. https://doi.org/10.1088/1757-899X/942/1/012014

  30. ESI Group: Openfoam. https://www.openfoam.com/

  31. Euler L (1744) Methodus inveniendi lineas curvas maximi minimive propietate gaudentes, Additamentum I, De curvis elasticis. Bousqet & Socios, Lausanne, Geneva, Switzerland. https://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb10053439-8

  32. Feil R, Pflumm T, Bortolotti P, Morandini M (2020) A cross-sectional aeroelastic analysis and structural optimization tool for slender composite structures. Compos Struct 253:112755. https://doi.org/10.1016/j.compstruct.2020.112755

  33. Fiedler B (2009) Hochleistungs-Faserverbundwerkstoffe mit Duroplastmatrix. Werkstoffe Struktur Eigenschaften Modellierung. TuTech Innovation GmbH, Hamburg, Germany

    Google Scholar 

  34. Fink R (2018) Einfluss der Materialkopplungen der klassischen Laminattheorie auf die Lage des Schubmittelpunktes mehrzelliger, dünnwandiger Profilquerschnitte. Technische Universität Berlin, Masterarbeit

    Google Scholar 

  35. Fraunhofer IAP (2019) Bio-based carbon fibers-high-performance and sustainability for light-weight applications. https://www.iap.fraunhofer.de/en/press_releases/2019/biobased-carbon-fibers.html

  36. Fraunhofer IWES, MoWiT—Modelica for wind turbines library. https://www.iwes.fraunhofer.de/en/research-spectrum/entry-oem-supplier/aerodynamics-for-wind-turbines/Load-Calculations.html

  37. Freymann R (2011) Strukturdynamik: Ein anwendungsorientiertes Lehrbuch. Springer, Berlin, Heidelberg, Germany (2011). https://doi.org/10.1007/978-3-642-19698-0

  38. Galilei G (1638) Discorsi e dimostrazioni matematiche intorno à due nuoue scienze. Elsevier, Leiden, Netherlands. https://doi.org/10.3931/e-rara-3923

  39. Gasch R, Knothe K, Liebich R (2012) Strukturdynamik: Diskrete Systeme und Kontinua, chap. 18–Bewegungsgleichungen von rotierenden elastischen Strukturen. Springer, Berlin, Heidelberg, Germany, pp 599–614. https://doi.org/10.1007/978-3-540-88977-9_18

  40. Gere JM, Goodno BJ (2012) Mechanics of materials, 8th international edn. Nelson Education

    Google Scholar 

  41. Ginder RS, Ozcan S (2019) Recycling of commercial e-glass reinforced thermoset composites via two temperature step pyrolysis to improve recovered fiber tensile strength and failure strain. Recycl 4(2):24. https://doi.org/10.3390/recycling4020024

  42. GL (2010) Guideline for the certification of wind turbines. Germanischer Lloyd Industrial Services, Hamburg, Germany

    Google Scholar 

  43. Goodman J (1899) Mechanics applied to engineering. Longmans, Green and Co., London, England. https://archive.org/details/mechanicsapplie03goodgoog

  44. Griffith AA (1921) VI. The phenomena of rupture and flow in solids. Philos Trans R Soc London Ser A Contain Pap Math Phys Character 221(582–593):163–198. https://doi.org/10.1098/rsta.1921.0006

  45. Habenicht G (2009) Kleben: Grundlagen, Technologie, Anwendungen, 6 edn. Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-540-85266-7

  46. Haibach E (2006) Betriebsfestigkeit, 3 edn. Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/3-540-29364-7

  47. Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 10(6):551–577. https://doi.org/10.1002/we.242

  48. Hansen MOL (2015) Aerodynamics of wind turbines, 3rd edn. Routledge, London, UK

    Book  Google Scholar 

  49. Hashin Z, Rosen B (1964) The elastic moduli of fiber-reinforced materials. J Appl Mech 31(2):223–232. https://doi.org/10.1115/1.3629590

  50. Hauffe A (2020) Elamx2. https://tu-dresden.de/ing/maschinenwesen/ilr/lft/elamx2/elamx

  51. Heinz JC, Sørensen NN, Zahle F, Skrzypiński W (2016) Vortex-induced vibrations on a modern wind turbine blade. Wind Energy 19(11):2041–2051. https://doi.org/10.1002/we.1967

  52. Hendriks H, Bulder B (1995) Fatigue equivalent load cycle method. A general method to compare the fatigue loading of different load spectrums. Tech. Rep. ECN-C-95-074. Energy research Centre of the Netherlands (ECN). https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-C--95-074

  53. Hodges DH (2006) Nonlinear composite beam theory. Am Inst Aeronaut Astronaut. https://doi.org/10.2514/4.866821

  54. IEA (2019) Global energy & CO2 status report—The latest trends in energy and emissions in 2018. Tech. rep., Int Energy Agency. https://iea.blob.core.windows.net/assets/23f9eb39-7493-4722-aced-61433cbffe10/Global_Energy_and_CO2_Status_Report_2018.pdf

  55. IEC (2010) IEC 61400-22—Wind turbines Part 22: conformity testing and certification. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  56. IEC (2014) IEC 61400-23—Wind turbines Part 23: full-scale structural testing of rotor blades. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  57. IEC (2018) IECRE OD-501—IEC system for certification to standards relating to equipment for use in renewable energy applications (IECRE System): type and component certification scheme. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  58. IEC (2018) IECRE OD-501-1—IEC system for certification to standards relating to equipment for use in renewable energy applications (IECRE System): conformity assessment and certification of blade by RECB, 2 edn. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  59. IEC (2019) IEC 61400-1—Wind energy generation systems—Part 1: design requirements, 4 edn. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  60. IEC (2020) IEC 61400-5—Wind energy generation systems—Part 5: wind turbine blades. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  61. IECRE (2021) RE testing laboratories (RETLs). https://test.iecre.org/dyn/www/f?p=110:7:::::P7_ORG_TYPE:RETL

  62. Institut für Mechatronik in Chemnitz: alaska/Wind. https://www.ifm-chemnitz.de/produkte/alaskamultibodydynamics/alaskawind

  63. ISO (1998) ISO 2394—General principles on reliability for structures. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  64. ISO (2012) ISO/IEC 17065—Conformity assessment—Requirements for bodies certifying products, processes and services. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  65. Jamieson P (2020) Top-level rotor optimisations based on actuator disc theory. Wind Energy Sci 5(2):807–818. https://doi.org/10.5194/wes-5-807-2020

  66. Jonkman J, Musial W (2010) Offshore code comparison collaboration (oc3) for iea wind task 23 offshore wind technology and deployment. Tech. Rep. NREL/TP-5000-48191. National Renewable Energy Laboratory (NREL), Golden, Colorado, USA. https://doi.org/10.2172/1004009

  67. Jørgensen JB, Sørensen BF, Kildegaard C (2018) The effect of buffer-layer on the steady-state energy release rate of a tunneling crack in a wind turbine blade joint. Compos Struct 188:64–71. https://doi.org/10.1016/j.compstruct.2017.12.081

  68. K-ZEITUNG (2020) Das Branchenblatt der Kunststoffindustrie: Mit PET-Recycling zum geschlossenen Kunststoffkreislauf. https://www.k-zeitung.de/mit-pet-recycling-zum-geschlossenen-kunststoffkreislauf/

  69. Kim T, Hansen AM, Branner K (2013) Development of an anisotropic beam finite element for composite wind turbine blades in multibody system. Renew Energy 59:172–183. https://doi.org/10.1016/j.renene.2013.03.033

  70. Kollár LP, Springer GS (2003) Mechanics of composite structures. Cambridge University Press. https://doi.org/10.1017/CBO9780511547140

  71. Konieczna A, Rutkowska A, Rachon D (2015) Health risk of exposure to Bisphenol A (BPA). Roczniki Państwowego Zakładu Higieny 66(1)

    Google Scholar 

  72. Krimmer A (2014) Mikromechanische Modellierung von Fasergelege-Kunststoff-Verbunden auf Basis von Normprüfungen unter Berücksichtigung der in-situ-Eigenschaften der Matrix. Ph.D. thesis, Technische Universität Berlin. https://doi.org/10.14279/depositonce-3869

  73. Krimmer A (2017) Ermüdungsbewertung von Faser-Kunststoff-Verbunden am Beispiel von Rotorblättern. Lightweight Des 10(4):28–33. https://doi.org/10.1007/s35725-017-0037-0

  74. Krimmer A, Leifheit R, Bardenhagen A (2016) Assessment of quasi-static and fatigue performance of uni-directionally fibre reinforced polymers on the basis of matrix effort. In: 6th EASN international conference on innovation in European aeronautics research. Porto, Portugal. https://doi.org/10.5281/zenodo.3878156

  75. Kumar S, Krishnan S (2020) Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: a review. Chem Pap 74:3785–3807. https://doi.org/10.1007/s11696-020-01198-y

  76. Lindenburg C, de Winkel G (2005) Buckling load prediction tools for rotor blades. Tech. Rep. ECN-C–05-103, Energy research Centre of the Netherlands ECN Wind Energy, Patten, the Netherlands. https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--05-103

  77. Madsen P, Dekker J, Thor S, McAnulty K, Matthies H, Thresher R (1990) Recommended practices for wind turbine testing, 3. fatigue loads, 2. edition. Tech. rep., International Energy Agency Programme for Research and Development on Wind Energy Conversion Systems

    Google Scholar 

  78. Mandell JF, Ashwill TD, Wilson TJ, Sears AT, Agastra P, Laird DL, Samborsky DD (2010) Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials. Tech. Rep. SAND2010-7052, Sandia National Laboratories, Albuquerque, New Mexico, USA. https://doi.org/10.2172/1034894

  79. Mandell JF, Miller D, Samborsky D (2013) Creep/fatigue behavior of resin infused biaxial glass fabric laminates. In: 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics, Boston, Massachusetts, USA. https://doi.org/10.2514/6.2013-1630

  80. Mativenga PT, Shuaib NA, Howarth J, Pestalozzi F, Woidasky J (2016) High voltage fragmentation and mechanical recycling of glass fibre thermoset composite. CIRP Annals 65(1):45–48. https://doi.org/10.1016/j.cirp.2016.04.107

  81. Melcher D, Rosemann H, Haller B, Neßlinger S, Petersen E, Rosemeier M (2020) Proof of concept: elliptical biaxial rotor blade fatigue test with resonant excitation. In: IOP conference series: materials science and engineering, vol 942. IOP Publishing, p 012007. https://doi.org/10.1088/1757-899x/942/1/012007

  82. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12(3):A159–A164. https://doi.org/10.1115/1.4009458

  83. Movahedi-Rad AV, Keller T, Vassilopoulos AP (2018) Fatigue damage in angle-ply GFRP laminates under tension-tension fatigue. Int J Fatigue 109:60–69. https://doi.org/10.1016/j.ijfatigue.2017.12.015

  84. MSC Software: Adams/AdWiMo—Advanced wind turbine modeling. https://hexagon.com/support-success/manufacturing-intelligence/design-engineering-support/toolkit-solutions

  85. Murray RE, Swan D, Snowberg D, Berry D, Beach R, Rooney S (2017) Manufacturing a 9 m thermoplastic composite wind turbine blade. In: 32nd technical conference on proceedings of the american society for composites (ASC). https://doi.org/10.12783/asc2017/15166

  86. National Renewable Energy Laboratory (NREL) (2021) CCBlade. https://github.com/WISDEM/CCBlade

  87. National Renewable Energy Laboratory (NREL) (2021) OpenFAST. https://github.com/OpenFAST/openfast

  88. Nickel A (2011) Optimierung der Designparameter von GFK-Kern-Verbunden unter Berücksichtigung der Harzaufnahme des Kerns. Diplomarbeit, Technische Universität Berlin

    Google Scholar 

  89. Ning SA (2014) A simple solution method for the blade element momentum equations with guaranteed convergence. Wind Energy 17(9):1327–1345. https://doi.org/10.1002/we.1636

  90. Øye S, Flex

    Google Scholar 

  91. Palmgren A (1924) Die Lebensdauer von Kugellagern. Zeitschrift des Vereins Deutscher Ingenieure 68(14):339–341

    Google Scholar 

  92. Pech A, Kolbitsch A, Zach F (2008) Tragwerke. Springer, Wien, Österreich. https://doi.org/10.1007/978-3-211-33032-6

  93. Peeters M, Santo G, Degroote J, Van Paepegem W (2018) Comparison of shell and solid finite element models for the static certification tests of a 43 m wind turbine blade. Energies 11(6):1346. https://doi.org/10.3390/en11061346

  94. Peeters M, Santo G, Degroote J, Van Paepegem W (2018) High-fidelity finite element models of composite wind turbine blades with shell and solid elements. Compos Struct 200:521–531. https://doi.org/10.1016/j.compstruct.2018.05.091

  95. Politecnico di Milano: Cp-Lambda. http://www.poliwind.polimi.it/

  96. Popko W, Huhn ML, Robertson A, Jonkman J, Wendt F, Müller K, Kretschmer M, Vorpahl F, Hagen TR, Galinos C, Le Dreff JB, Gilbert P, Auriac B, Víllora FN, Schünemann P, Bayati I, Belloli M, Oh S, Totsuka Y, Qvist J, Bachynski E, Sørum SH, Thomassen PE, Shin H, Vittori F, Galván J, Molins C, Bonnet P, van der Zee T, Bergua R, Wang K, Fu P, Cai J (2018) Verification of a numerical model of the offshore wind turbine from the alpha ventus wind farm within OC5 phase III. In: 37th international conference on ocean, offshore and arctic engineering. American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2018-77589

  97. Previtali F, Eyb E (2021) An improved approach for the fatigue calculation of rotor blades based on sector loads. Wind Eng. https://doi.org/10.1177/0309524X20985320

  98. Puck A (1996) Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis. Hanser, Munich, Germany

    Google Scholar 

  99. Quaschning V (2021) Erneuerbare Energien und Klimaschutz: Hintergründe–Techniken und Planung–Ökonomie und Ökologie–Energiewende, 6 edn. Hanser, Munich, Germany. https://doi.org/10.3139/9783446468689

  100. Rahmstorf S (2019) Wie viel CO2 kann Deutschland noch ausstoßen? https://scilogs.spektrum.de/klimalounge/wie-viel-co2-kann-Deutschland-noch-ausstossen/

  101. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis, 2 edn. CRC Press, Boca Raton, Florida, USA. https://doi.org/10.1201/b12409

  102. Rinker J, Gaertner E, Zahle F, Skrzypiński W, Abbas N, Bredmose H, Barter G, Dykes K (2020) Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW reference wind turbine. J Phys: Conf Ser 1618:052052. IOP Publishing. https://doi.org/10.1088/1742-6596/1618/5/052052

  103. Rosemeier M (2013) Non-linear ultimate limit state analysis of a wind turbine blade. Master’s thesis, Hochschule Bremerhaven, Munich, Germany. https://www.grin.com/document/211296

  104. Rosemeier M, Antoniou A (2021) Probabilistic approach for the fatigue strength prediction of polymers. AIAA J 60(2):951–961. https://doi.org/10.2514/1.J060444

  105. Rosemeier M, Bätge M (2014) A concept study of a carbon spar cap design for a 80m wind turbine blade. J Phys: Conf Ser 524:012039 (IOP Publishing). https://doi.org/10.1088/1742-6596/524/1/012039

  106. Rosemeier M, Berring P, Branner K (2016) Non-linear ultimate strength and stability limit state analysis of a wind turbine blade. Wind Energy 19(5):825–846. https://doi.org/10.1002/we.1868

  107. Rosemeier M, Buriticá P, Antoniou A (2018) Impact of resin uptake of core materials on buckling of wind turbine blades. J Phys: Conf Ser 1037:042001 (IOP Publishing). https://doi.org/10.1088/1742-6596/1037/4/042001

  108. Rosemeier M, Krimmer A, Antoniou A (2020) Development of thermal residual stresses during manufacture of wind turbine blades. J Phys: Conf Ser 1452:012060 (IOP Publishing). https://doi.org/10.1088/1742-6596/1452/1/012060

  109. Rosemeier M, Krimmer A, Bardenhagen A, Antoniou A (2019) Tunneling crack initiation in trailing-edge bond lines of wind-turbine blades. AIAA J 57(12):5462–5474. https://doi.org/10.2514/1.J058179

  110. Rosemeier M, Saathoff M (2020) Assessment of a rotor blade extension retrofit as a supplement to the lifetime extension of wind turbines. Wind Energy Sci 5(3):897–909. https://doi.org/10.5194/wes-5-897-2020

  111. Rosemeier M, Saathoff M (2020) Impact of manufacture-induced blade shape distortion on turbine loads and energy yield. https://doi.org/10.5281/zenodo.4058566

  112. Saathoff M, Rosemeier M, Kleinselbeck T, Rathmann B (2021) Effect of individual blade pitch angle misalignment on the remaining useful life of wind turbines. Wind Energy Sci 6(5):1079–1087. https://doi.org/10.5194/wes-6-1079-2021

  113. Schleich F, Stammler M (2019) Realitätsgetreue Abbildung von Rotorblattlagerbelastungen durch Berücksichtigung der Anschlusssteifigkeiten. In: VDI-Berichte 234813. VDI-Fachtagung Gleit- und Wälzlagerungen 2019. Gestaltung - Berechnung - Einsatz: Schweinfurt, vol 2348. Verein Deutscher Ingenieure, pp 209–220. https://doi.org/10.51202/9783181023488-209

  114. Schlömer S, Bruckner T, Fulton L, Hertwich E, McKinnon A, Perczyk D, Roy J, Schaeffer R, Sims R, Smith P, Wiser R (2014) 2014: Annex III: technology-specific cost and performance parameters. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf

  115. Schümann JP (2019) Zur zeit-, temperatur- und umsatzabhängigen Entwicklung polymerphysikalischer Vernetzungsschwindung aminisch vernetzender Epoxide. Ph.D. thesis, Technische Universität Clausthal, Clausthal, Germany. https://doi.org/10.21268/20190306-0

  116. Schürmann H (2007) Konstruieren mit Faser-Kunststoff-Verbunden, 2 edn. Springer. https://doi.org/10.1007/978-3-540-72190-1

  117. Skjoldan PF (2011) Aeroelastic modal dynamics of wind turbines including anisotropic effects. Ph.D. thesis, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi. https://backend.orbit.dtu.dk/ws/portalfiles/portal/5509069/ris-phd-66.pdf

  118. Sommer V, Stockschläder J, Walther G (2020) Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European union. Waste Manag 115:83–94. https://doi.org/10.1016/j.wasman.2020.06.043

  119. Sommer V, Walther G (2021) Recycling and recovery infrastructures for glass and carbon fiber reinforced plastic waste from wind energy industry: a European case study. Waste Manag 121:265–275. https://doi.org/10.1016/j.wasman.2020.12.021

  120. Stiesdal H, Enevoldsen PB, Johansen K, Kristensen JJ, Noertem M, Winther-Jensen M (2001) Verfahren zur Herstellung von Windmühlenflügeln. https://worldwide.espacenet.com/patent/search/family/026069092/publication/DE60210729T2?q=pn%3DDE60210729T

  121. Suresh S (2003) Fatigue of materials, 2 edn. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511806575

  122. Sutherland H, Mandell J (2005) Optimized goodman diagram for the analysis of fiberglass composites used in wind turbine blades. In: 43rd AIAA aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2005-196

  123. Tareq MS, Jony B, Zainuddin S, Al Ahsan M, Hosur MV (2021) Fatigue analysis and fracture toughness of graphene reinforced carbon fibre polymer composites. Fatigue Fract Eng Mater Struct 44(2):461–474. https://doi.org/10.1111/ffe.13371

  124. Technische Universität Berlin - Institut für Strömungsmechanik und Technische Akustik - Fachgebiet Experimentelle Strömungsmechanik: Qblade (2016). http://www.q-blade.org

  125. Technische Universität Darmstadt - Fachgebiet Konstruktiver Leichtbau und Bauweisen (KLuB): Alfalam (2009)

    Google Scholar 

  126. The Economist—The Americas: a worrying windfall—The wind-power boom set off a scramble for balsa wood in Ecuador (2020). https://www.economist.com/the-americas/2021/01/30/the-wind-power-boom-set-off-a-scramble-for-balsa-wood-in-ecuador

  127. Thomason JL (2019) Glass fibre sizing: a review. Compos Part A: Appl Sci Manuf 127:105619. https://doi.org/10.1016/j.compositesa.2019.105619

  128. Thomson C, Harrison G (2015) Life cycle costs and carbon emissions of wind power: executive summary. Tech. rep., University of Edinburgh, Edinburgh, Scotland. https://www.climatexchange.org.uk/media/1459/life_cycle_wind_-_executive_summary_.pdf

  129. Timoshenko SP (1921) LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. London Edinburgh Dublin Philos Mag J Sci 41(245):744–746. https://doi.org/10.1080/14786442108636264

  130. TPI Composites (2019) TPI composites blade manufacturing process. https://youtu.be/jpRudTUIyfM

  131. UNO (1987) Report of the world commission on environment and development: our common future. Organisation der Vereinten Nationen. https://www.are.admin.ch/dam/are/de/dokumente/nachhaltige_entwicklung/dokumente/bericht/our_common_futurebrundtlandreport1987.pdf.download.pdf

  132. UNO (2015) TREATIES-XXVII.7.d Paris agreement. Organisation der Vereinten Nationen. https://treaties.un.org/doc/Treaties/2016/02/20160215%2006-03%20PM/Ch_XXVII-7-d.pdf

  133. Varik MV (2013) FINSTRIP: theoretical reference. Knowledge Centre WMC

    Google Scholar 

  134. VDI (2003) VDI 2230 Part 1—Systematic calculation of high duty bolted joints Joints with one cylindrical bolt. Verein Deutscher Ingenieure, Düsseldorf, Germany

    Google Scholar 

  135. VDI (2006) VDI 2014 Part 3 development of FRP components (fibre-reinforced plastics) analysis. Verein Deutscher Ingenieure, Düsseldorf, Germany

    Google Scholar 

  136. Vincent GA, de Bruijn TA, Wijskamp S, Rasheed MIA, van Drongelen M, Akkerman R (2019) Shredding and sieving thermoplastic composite scrap: method development and analyses of the fibre length distributions. Compos Part B: Eng 176:107197. https://doi.org/10.1016/j.compositesb.2019.107197

  137. Wang Q, Sprague MA, Jonkman JM (2014) Nonlinear Legendre spectral finite elements for wind turbine blade dynamics. In: 32nd ASME wind energy symposium, p. 1224. American Institute of Aeronautics and Astronautics, National Harbor, Maryland, USA. https://doi.org/10.2514/6.2014-1224

  138. Wang Q, Sprague MA, Jonkman JM (2016) Partitioned nonlinear structural analysis of wind turbines using Beamdyn. In: 34th wind energy symposium. American Institute of Aeronautics and Astronautics, San Diego, Kalifornien, USA, p 0753. https://doi.org/10.2514/6.2016-0753

  139. Wang Q, Yu W (2017) Geometrically nonlinear analysis of composite beams using wiener-milenković parameters. J Renew Sustain Energy 9(3):033306. https://doi.org/10.1063/1.4985091

  140. Wang S, Zhang C (2014) Structure mechanical modeling of thin-walled closed-section composite beams, part 2: multi-cell cross section. Compos Struct 113:56–62. https://doi.org/10.1016/j.compstruct.2014.03.002

  141. Wiedemann J (2007) Leichtbau: Elemente und Konstruktion, 3 edn. Springer, Berlin, Heidelberg, New York. https://doi.org/10.1007/978-3-540-33657-0

  142. Wikipedia (2021) Die freie Enzyklopädie: Nachhaltigkeit. https://de.wikipedia.org/wiki/Nachhaltigkeit

  143. Wittel H, Jannasch D, Voßiek J, Spura C (2019) Roloff/Matek Maschinenelemente, 24 edn. Springer Viewer. https://doi.org/10.1007/978-3-658-26280-8

  144. Wlassow WS (1959) Dünnwandige elastische Stäbe, vol 1, 2 edn. Staatsverlag für physikalisch-mathematische Literatur, Moscow, Soviet Union

    Google Scholar 

  145. WMC Technology Center Netherlands: FOCUS6

    Google Scholar 

  146. Zangenberg J, Brøndsted P, Gillespie Jr JW (2014) Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric. J Compos Mater 48(22):2711–2727. https://doi.org/10.1177/0021998313502062

  147. Zhang C, Wang S (2014) Structure mechanical modeling of thin-walled closed-section composite beams, part 1: single-cell cross section. Compos Struct 113:12–22. https://doi.org/10.1016/j.compstruct.2014.03.005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malo Rosemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosemeier, M., Krimmer, A. (2023). Rotor Blade Structure. In: Schaffarczyk, A.P. (eds) Wind Power Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20332-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20332-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20331-2

  • Online ISBN: 978-3-031-20332-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics