Skip to main content

Exploiting CLIP-Based Multi-modal Approach for Artwork Classification and Retrieval

  • Conference paper
  • First Online:
The Future of Heritage Science and Technologies: ICT and Digital Heritage (Florence Heri-Tech 2022)

Abstract

Given the recent advantages in multimodal image pretraining where visual models trained with semantically dense textual super- vision tend to have better generalization capabilities than those trained using categorical attributes or through unsupervised techniques, in this work we investigate how recent CLIP model can be applied in several tasks in artwork domain. We perform exhaustive experiments on the NoisyArt dataset which is a collection of artwork images collected from public resources on the web. On such dataset CLIP achieve impressive results on (zero-shot) classification and promising results in both artwork-to-artwork and description-to-artwork domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the CVPR (2016)

    Google Scholar 

  2. Del Chiaro, R., Bagdanov, A.D., Del Bimbo, A.: Noisyart: a dataset for webly-supervised artwork recognition. In: VISIGRAPP (4: VISAPP), pp. 467–475 (2019)

    Google Scholar 

  3. Del Chiaro, R., Bagdanov, A.D., Del Bimbo, A.: Webly-supervised zero-shot learning for artwork instance recognition. Pattern Recogn. Lett. 128, 420–426 (2019). ISSN 0167–8655. https://doi.org/10.1016/j.patrec.2019.09.027. https://www.sciencedirect.com/science/article/pii/S0167865519302739

  4. Delhumeau, J., Gosselin, P.-H., Jégou, H., Pérez, P.: Revisiting the VLAD image representation. In: Proceedings of the ACM MM (2013)

    Google Scholar 

  5. Frome, A., et al.: Devise: a deep visual-semantic embedding model. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds) Advances in Neural Information Processing Systems, vol. 26. Curran Associates, Inc. (2013). https://proceedings.neurips.cc/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  7. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010). https://doi.org/10.1007/s11263-009-0285-2

    Article  Google Scholar 

  8. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012). ISSN 1939–3539. https://doi.org/10.1109/TPAMI.2011.235

  9. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features (2016). https://doi.org/10.1007/978-3-319-46604-0_48

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the NIPS (2012)

    Google Scholar 

  11. Mikulik, A., Perdoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine quantization. Int. J. Comput. Vision 103(1), 163–175 (2013)

    Article  MathSciNet  Google Scholar 

  12. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  13. Radenovic, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668 (2019). https://doi.org/10.1109/TPAMI.2018.2846566

    Article  Google Scholar 

  14. Radford, A., et al: Learning transferable visual models from natural language supervision (2021). https://doi.org/10.1007/978-3-319-46604-0_48

  15. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: Bach, F., Blei, D. (eds) Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2152–2161, Lille, France. PMLR (2015). https://proceedings.mlr.press/v37/romera-paredes15.html

  16. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge (2015). https://doi.org/10.1007/s11263-015-0816-y

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient- based localization. Int. J. Comput. Vis. 128(2), 336359 (2019). ISSN 1573–1405. https://doi.org/10.1007/s11263-019-01228-7

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  19. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of the ICCV (2003). https://doi.org/10.1109/ICCV.2003.1238663

  20. Tolias, G., Sicre, R., J´egou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: Proceedings of the ICLR (2016)

    Google Scholar 

  21. Vaccaro, F., Bertini, M., Uricchio, T., Del Bimbo, A.: Image retrieval using multi-scale CNN features pooling (2020)

    Google Scholar 

  22. Zheng, L., Yang, Y., Tian, Q.: Sift meets cnn: a decade survey of instance retrieval (2017)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Commission under European Horizon 2020 Programme, grant number 101004545 - ReInHerit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bertini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldrati, A., Bertini, M., Uricchio, T., Del Bimbo, A. (2022). Exploiting CLIP-Based Multi-modal Approach for Artwork Classification and Retrieval. In: Furferi, R., Governi, L., Volpe, Y., Seymour, K., Pelagotti, A., Gherardini, F. (eds) The Future of Heritage Science and Technologies: ICT and Digital Heritage. Florence Heri-Tech 2022. Communications in Computer and Information Science, vol 1645. Springer, Cham. https://doi.org/10.1007/978-3-031-20302-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20302-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20301-5

  • Online ISBN: 978-3-031-20302-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics