Skip to main content

Future Perspectives

  • Chapter
  • First Online:
ECMO Retrieval Program Foundation

Abstract

Due to the permanently increasing number of patients treated with mechanical circulatory systems, particularly ECMO as a standard short-term heart and lung support, medical, academic, and scientific awareness of this field has rapidly increased over the last decade. As this therapy management unequivocally depends on high-end technology, huge progress in manufactural industry of this sector has been noted in recent years. Moreover, this trend toward optimizing safety and reliability of ECMO systems and adjunct disposables seems to be as important as further experimental and clinical research in the field of heart failure treatment. This chapter will provide new insides and future perspectives for these both fundamental prerequisites of further improving standards of care with ECMO support with the view to saving more lives of our patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siefert SA, Sarkar R. Matrix metalloproteinases in vascular physiology and disease. Vascular. 2012;20(4):210–6.

    Article  Google Scholar 

  2. Pawlinski R, Tencati M, Hampton CR, Shishido T, Bullard TA, Casey LM, et al. Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation. 2007;116(20):2298–306.

    Article  CAS  Google Scholar 

  3. Nakagawa M, Takemura G, Kanamori H, Goto K, Maruyama R, Tsujimoto A, et al. Mechanisms by which late coronary reperfusion mitigates postinfarction cardiac remodeling. Circ Res. 2008;103(1):98–106.

    Article  CAS  Google Scholar 

  4. Kelly D, Cockerill G, Ng LL, Thompson M, Khan S, Samani NJ, et al. Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J. 2007;28(6):711–8.

    Article  CAS  Google Scholar 

  5. Janicki JS, Brower GL, Henegar JR, Wang L. Ventricular remodeling in heart failure: the role of myocardial collagen. Adv Exp Med Biol. 1995;382:239–45.

    Article  CAS  Google Scholar 

  6. Fraccarollo D, Galuppo P, Bauersachs J. Novel therapeutic approaches to post-infarction remodelling. Cardiovasc Res. 2012;94(2):293–303.

    Article  CAS  Google Scholar 

  7. Rossen RD, Michael LH, Hawkins HK, Youker K, Dreyer WJ, Baughn RE, et al. Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion. Circ Res. 1994;75(3):546–55.

    Article  CAS  Google Scholar 

  8. Yasojima K, Kilgore KS, Washington RA, Lucchesi BR, McGeer PL. Complement gene expression by rabbit heart: upregulation by ischemia and reperfusion. Circ Res. 1998;82(11):1224–30.

    Article  CAS  Google Scholar 

  9. Birdsall HH, Green DM, Trial J, Youker KA, Burns AR, MacKay CR, et al. Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation. 1997;95(3):684–92.

    Article  CAS  Google Scholar 

  10. Dreyer WJ, Michael LH, Nguyen T, Smith CW, Anderson DC, Entman ML, Rossen RD. Kinetics of C5a release in cardiac lymph of dogs experiencing coronary artery ischemia-reperfusion injury. Circ Res. 1992;71(6):1518–24.

    Article  CAS  Google Scholar 

  11. Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation. 1998;98(7):699–710.

    Article  CAS  Google Scholar 

  12. Kupatt C, Habazettl H, Goedecke A, Wolf DA, Zahler S, Boekstegers P, et al. Tumor necrosis factor-alpha contributes to ischemia- and reperfusion-induced endothelial activation in isolated hearts. Circ Res. 1999;84(4):392–400.

    Article  CAS  Google Scholar 

  13. Lenardo MJ, Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell. 1989;58(2):227–9.

    Article  CAS  Google Scholar 

  14. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A. 2000;97(10):5456–61.

    Article  CAS  Google Scholar 

  15. Richard V, Murry CE, Reimer KA. Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation. 1995;92(7):1891–901.

    Article  CAS  Google Scholar 

  16. Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, et al. Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Phys. 1999;277(2 Pt 2):H660–8.

    CAS  Google Scholar 

  17. Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest. 1995;96(5):2304–10.

    Article  CAS  Google Scholar 

  18. Gabbiani G. Evolution and clinical implications of the myofibroblast concept. Cardiovasc Res. 1998;38(3):545–8.

    Article  CAS  Google Scholar 

  19. Willems IE, Havenith MG, De Mey JG, Daemen MJ. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994;145(4):868–75.

    CAS  Google Scholar 

  20. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–72.

    Article  CAS  Google Scholar 

  21. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–67.

    Article  Google Scholar 

  22. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4(1):98–108.

    Article  Google Scholar 

  23. Cohen MV, Yang XM, Neumann T, Heusch G, Downey JM. Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation. 2000;102(5):579–83.

    Article  CAS  Google Scholar 

  24. Dixon JA, Spinale FG. Myocardial remodeling: cellular and extracellular events and targets. Annu Rev Physiol. 2011;73:47–68.

    Article  CAS  Google Scholar 

  25. Rumberger JA, Behrenbeck T, Breen JR, Reed JE, Gersh BJ. Nonparallel changes in global left ventricular chamber volume and muscle mass during the first year after transmural myocardial infarction in humans. J Am Coll Cardiol. 1993;21(3):673–82.

    Article  CAS  Google Scholar 

  26. Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (studies of left ventricular dysfunction) investigators. Circulation. 1993;88(5 Pt 1):2277–83.

    Article  CAS  Google Scholar 

  27. Douglas PS, Morrow R, Ioli A, Reichek N. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1989;13(2):311–5.

    Article  CAS  Google Scholar 

  28. Senior R, Basu S, Kinsey C, Schaeffer S, Lahiri A. Carvedilol prevents remodeling in patients with left ventricular dysfunction after acute myocardial infarction. Am Heart J. 1999;137(4 Pt 1):646–52.

    Article  CAS  Google Scholar 

  29. Curran J, Burkhoff D, Kloner RA. Beyond reperfusion: acute ventricular unloading and cardioprotection during myocardial infarction. J Cardiovasc Transl Res. 2019;12(2):95–106.

    Article  Google Scholar 

  30. Schrage B, Burkhoff D, Rübsamen N, Becher PM, Schwarzl M, Bernhardt A, et al. Unloading of the left ventricle during venoarterial extracorporeal membrane oxygenation therapy in cardiogenic shock. JACC Heart Fail. 2018;6(12):1035–43.

    Article  Google Scholar 

  31. Swain L, Reyelt L, Bhave S, Qiao X, Thomas CJ, Zweck E, et al. Transvalvular ventricular unloading before reperfusion in acute myocardial infarction. J Am Coll Cardiol. 2020;76(6):684–99.

    Article  CAS  Google Scholar 

  32. Esposito ML, Zhang Y, Qiao X, Reyelt L, Paruchuri V, Schnitzler GR, et al. Left ventricular unloading before reperfusion promotes functional recovery after acute myocardial infarction. J Am Coll Cardiol. 2018;72(5):501–14.

    Article  Google Scholar 

  33. Kapur NK, Alkhouli MA, DeMartini TJ, Faraz H, George ZH, Goodwin MJ, et al. Unloading the left ventricle before reperfusion in patients with anterior ST-segment-elevation myocardial infarction. Circulation. 2019;139(3):337–46. https://doi.org/10.1161/CIRCULATIONAHA.118.038269.

    Article  Google Scholar 

  34. Wever-Pinzon J, Selzman CH, Stoddard G, Wever-Pinzon O, Catino A, Kfoury AG, et al. Impact of ischemic heart failure etiology on cardiac recovery during mechanical unloading. J Am Coll Cardiol. 2016;68(16):1741–52.

    Article  Google Scholar 

  35. Wahlster S, Sharma M, Lewis AK, Patel PV, Hartog CS, Jannotta G, et al. The coronavirus disease 2019 pandemic’s effect on critical care resources and health-care providers a global survey. Chest. 2021;159(2):619–33.

    Article  CAS  Google Scholar 

  36. Extracorporeal Life Support Organization - ECMO and ECLS. Extracorporeal life support Organization (elso) [Internet]. ELSO. [cited 2021Sep1]. Available from: http://www.elso.org/

  37. Barbaro RP, Odetola FO, Kidwell KM, Paden ML, Bartlett RH, Davis MM, et al. Association of Hospital-Level Volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry. Am J Resp Crit Care. 2015;191(8):894–901.

    Article  Google Scholar 

  38. Freeman R, Nault C, Mowry J, Baldridge P. Expanded resources through utilization of a primary care giver extracorporeal membrane oxygenation model. Crit Care Nurse Q. 2012;35(1):39–49.

    Article  Google Scholar 

  39. Aiken LH, Clarke SP, Sloane DM, Sochalski J, Silber JH. Hospital nurse staffing and patient mortality, nurse burnout, and job dissatisfaction. JAMA. 2002;288(16):1987–93.

    Article  Google Scholar 

  40. Chialastri A. Automation in aviation. 2012.

    Google Scholar 

  41. Tan H, Zhao F, Hao H, Liu Z, Amer AA, Babiker H. Automatic emergency braking (AEB) system impact on fatality and injury reduction in China. Int J Environ Res Pu. 2020;17(3):917.

    Article  Google Scholar 

  42. Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg. 2014;97(2):610–6.

    Article  Google Scholar 

  43. Cavayas YA, Munshi L, del Sorbo L, Fan E. The early change in PaCO2 after extracorporeal membrane oxygenation initiation is associated with neurological complications. Am J Resp Crit Care. 2020;0(ja):1525–35.

    Google Scholar 

  44. Condello I. Water condensation and gas exchange correlation in different models and fibers of blood oxygenators: “how can we improve performance?”. J Extra-corporeal Technol. 2020;52(1):43–51.

    Google Scholar 

  45. Bowman S. Impact of electronic health record systems on information integrity: quality and safety implications. Perspectives heal information management Ahima. Am Heal Inf Manage Assoc. 2013;10:1c.

    Google Scholar 

  46. Beck J, Fung K, Lopez H, Mongero L, Argenziano M. Real-time data acquisition and alerts may reduce reaction time and improve perfusionist performance during cardiopulmonary bypass. Perfusion. 2015;30(1):41–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Sabashnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabashnikov, A. et al. (2023). Future Perspectives. In: Sabashnikov, A., Wahlers, T. (eds) ECMO Retrieval Program Foundation. Springer, Cham. https://doi.org/10.1007/978-3-031-20260-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20260-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17148-2

  • Online ISBN: 978-3-031-20260-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics