Skip to main content

A Novel Dual-Modal Biometric Recognition Method Based on Weighted Joint Group Sparse Representation Classification

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

  • 1076 Accesses

Abstract

Multi-modal biometric recognition technology is an effective method to improve the accuracy and reliability of identity recognition. However, there are some problems (such as feature space incompatibility) with the fusion between different modal biometric traits. To address the above problem, we propose a dual-modal biometric recognition method based on weighted joint group sparse representation classification (WJGSRC). The proposed method fuses the Pyramid Histogram of Oriented Gradients (PHOG) feature and Local Phase Quantization (LPQ) feature for each modality by the Canonical Correlation Analysis (CCA) at first. Then, the dictionary matrix is optimized by the sum of weighted scores between different modalities. Finally, the group sparse and weight constraints are constructed respectively to further improve the final recognition accuracy. The experimental results on two dual-modal databases show that the proposed method can effectively improve the performance of identity recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adiraju, R.V., Masanipalli, K.K., Reddy, T.D., Pedapalli, R., Chundru, S., Panigrahy, A.K.: An extensive survey on finger and palm vein recognition system. Mater. Today: Proc. 45, 1804–1808 (2021)

    Google Scholar 

  2. Yang, W., Wang, S., Hu, J., Zheng, G., Valli, C.: A fingerprint and finger-vein based cancelable multi-biometric system. Pattern Recognit. 78, 242–251 (2018)

    Article  Google Scholar 

  3. Khodadoust, J., Medina-PĂ©rez, M.A., Monroy, R., Khodadoust, A.M., Mirkamali, S.S.: A multibiometric system based on the fusion of fingerprint, finger-vein, and finger-knuckle-print. Expert Syst. Appl. 176, 114687 (2021)

    Article  Google Scholar 

  4. Liu, F., Liu, G., Zhao, Q., Shen, L.: Robust and high-security fingerprint recognition system using optical coherence tomography. Neurocomputing 402, 14–28 (2020)

    Article  Google Scholar 

  5. Zhao, D., Ma, H., Yang, Z., Li, J., Tian, W.: Finger vein recognition based on lightweight CNN combining center loss and dynamic regularization. Infrared Phys. Technol. 105, 103221 (2020)

    Article  Google Scholar 

  6. Shekhar, S., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Joint sparse representation for robust multimodal biometrics recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 113–126 (2014)

    Article  Google Scholar 

  7. Bosch, A., Zisserman, A., Munoz, X., Zisserman, P.: Representing shape with a spatial pyramid kernel, In: ACM International Conference on Image and Video Retrieval (2007)

    Google Scholar 

  8. Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces using Local Phase Quantization. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  9. Kamlaskar, C., Abhyankar, A.: Iris-Fingerprint multimodal biometric system based on optimal feature level fusion model. AIMS Electr. Electr. Eng. 5, 229–250 (2021)

    Article  Google Scholar 

  10. Al-Quraishi, M.S., Elamvazuthi, I., Tang, T.B., Al-Qurishi, M., Parasuraman, S., Borboni, A.: Multimodal fusion approach based on EEG and EMG signals for lower limb movement recognition. IEEE Sens. J. 21, 27640–27650 (2021)

    Article  Google Scholar 

  11. Khellat-Kihel, S., Abrishambaf, R., Monteiro, J.L., Benyettou, M.: Multimodal fusion of the finger vein, fingerprint and the finger-knuckle-print using Kernel Fisher analysis. Appl. Soft Comput. 42, 439–447 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, C., Ma, H., Li, Y. (2022). A Novel Dual-Modal Biometric Recognition Method Based on Weighted Joint Group Sparse Representation Classification. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics