Skip to main content

Multi-scale Object Detection Algorithm Based on Adaptive Feature Fusion

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

  • 1055 Accesses

Abstract

Aiming at the problem that each detection feature layer of the single-shot multibox detector (SSD) algorithm does not perform feature fusion and the detection effect is poor, an adaptive feature fusion SSD model is proposed. Firstly, the location of the shallow feature map and the multi-scale receptive field on the deep feature map are added, and the scaling and adaptive fusion of different scale feature maps are carried out to improve the representation ability of detail information. Secondly, the feature layer of the same scale can provide different ranges of feature information, transfer the specific features with detailed information to the abstract features with semantic information, and use the global average pool to guide learning and expand the expression ability of features. After training and testing on the PASCAL VOC data set, the detection accuracy reaches 80.6% and the detection speed reaches 60.9 fps, which verifies the robustness and real-time performance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang, L.P., He, H.J., Zhou, G.M.: Research overview of object detection methods. J. Comput. Eng. Appl. 54, 11–18 (2018)

    Google Scholar 

  2. Liu, W., Anguelov, D., Erhan, D., et al.: SSD: single shot multibox detector. In: 14th European Conference on Computer Vision, Amsterdam, Netherlands, pp. 21–37 (2016)

    Google Scholar 

  3. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection – SNIP. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 3578–3587 (2018)

    Google Scholar 

  4. Li, Y., Chen, Y., Wang, N., et al.: Scale-aware trident networks for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), pp. 6054–6063 (2019)

    Google Scholar 

  5. Lin, T.-Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, pp. 936–944 (2017)

    Google Scholar 

  6. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017)

    Article  Google Scholar 

  7. Redmon, J., Farhadi, A.:YOLOv3: an incremental improvement. J. Comput. Vis. Pattern Recogn. arXiv:1804.02767 (2018)

  8. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 6154–6162 (2018)

    Google Scholar 

  9. Liu, S., Qi, L., Qin, H., Shi, J., et al.: Path aggregation network for instance segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 8759–8768 (2018)

    Google Scholar 

  10. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 10781–10790 (2020)

    Google Scholar 

  11. Zhu, M., Han, K., Yu, C., et al.: Dynamic feature pyramid networks for object detection. J. arXiv:2012.00779 (2020)

  12. Fu, C.-Y., Liu, W., Ranga, A., et al.: DSSD: deconvolutional single shot detector. J. arXiv:1701.06659 (2017)

  13. Zhai, S., Shang, D., Wang, S., et al.: DF-SSD: an improved SSD object detection algorithm based on denseNet and feature fusion. J. IEEE Access 8, 24344–24357 (2020)

    Article  Google Scholar 

  14. Yin, Q., Yang, W., Ran, M., et al.: FD-SSD: an improved SSD object detection algorithm based on feature fusion and dilated convolution. J. Signal Process. Image Commun, 98, 116402 (2021)

    Google Scholar 

  15. Zheng, L., Fu, C., Zhao, Y.: Extend the shallow part of single shot multibox detector via convolutional neural network. In: Tenth International Conference on Digital Image Processing, pp. 287–293. IEEE, International Society for Optics and Photonics (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province, China (Grand No. 2108085MF197 and Grand No.1708085MF154), the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2019A0162), the Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Anhui Polytechnic University (Grant No. DTESD2020B02), the National Natural Science Foundation Pre-research of Anhui Polytechnic University (Xjky2022040), and the Graduate Science Foundation of the Anhui Higher Education Institutions of China (Grant No. YJS20210448 and YJS20210449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengsui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Wang, F., Xie, Z., Wang, Y. (2022). Multi-scale Object Detection Algorithm Based on Adaptive Feature Fusion. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics