Skip to main content

About Digital Twins, Agents, and Multiagent Systems: A Cross-Fertilisation Journey

  • Conference paper
  • First Online:
Autonomous Agents and Multiagent Systems. Best and Visionary Papers (AAMAS 2022)

Abstract

Digital Twins (DTs) are emerging as a fundamental brick of engineering cyber-physical systems, but their notion is still mostly bound to specific business domains (e.g. manufacturing), goals (e.g. product design), or applications (e.g. the Internet of Things). As such, their value as general purpose engineering abstractions is yet to be fully revealed. In this paper, we relate DTs with agents and multiagent systems, as the latter are arguably the most rich abstractions available for the engineering of complex socio-technical and cyber-physical systems, and the former could both fill in some gaps in agent-oriented engineering and benefit from an agent-oriented interpretation—in a cross-fertilisation journey.

This work has been partially supported by the MIUR PRIN 2017 Project N. 2017KRC7KT “Fluidware”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abburu, S., Berre, A.J., Jacoby, M., Roman, D., Stojanovic, L., Stojanovic, N.: COGNITWIN - hybrid and cognitive digital twins for the process industry. In: IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–8 (2020)

    Google Scholar 

  2. Ahmed, S.H., Kim, G., Kim, D.: Cyber physical system: architecture, applications and research challenges. In: Proceedings of the IFIP Wireless Days, WD 2013, Valencia, Spain, 13–15 November 2013, pp. 1–5. IEEE (2013). https://doi.org/10.1109/WD.2013.6686528

  3. Alelaimat, A., Ghose, A., Dam, H.K.: Abductive design of BDI agent-based digital twins of organizations. In: PRIMA 2020: Principles and Practice of Multi-Agent Systems - 23rd International Conference. LNCS, vol. 12568, pp. 377–385. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-69322-0_27

    Chapter  Google Scholar 

  4. Bellifemine, F.: FIPA: a standard for agent interoperability. In: WOA 2000: Dagli Oggetti agli Agenti. 1st AI*IA/TABOO Joint Workshop “From Objects to Agents”: Evolutive Trends of Software Systems, 29–30 May 2000, Parma, Italy, p. 121. Pitagora Editrice Bologna (2000)

    Google Scholar 

  5. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-based software development with JADE. Auton. Agent. Multi-Agent Syst. 34(2), 1–19 (2020). https://doi.org/10.1007/s10458-020-09460-z

    Article  Google Scholar 

  6. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

    Article  Google Scholar 

  7. Chen, X., Song, H.: Further extensions of FIPA contract net protocol: threshold plus DoA. In: Haddad, H., Omicini, A., Wainwright, R.L., Liebrock, L.M. (eds.) Proceedings of the 2004 ACM Symposium on Applied Computing (SAC), Nicosia, Cyprus, 14–17 March 2004, pp. 45–51. ACM (2004). https://doi.org/10.1145/967900.967914

  8. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI), vol. 11375, pp. 285–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25693-7_15

    Chapter  Google Scholar 

  9. Clemen, T., et al.: Multi-agent systems and digital twins for smarter cities. In: Giabbanelli, P.J. (ed.) SIGSIM-PADS 2021: SIGSIM Conference on Principles of Advanced Discrete Simulation, Virtual Event, USA, 31 May - 2 June, 2021, pp. 45–55. ACM (2021). https://doi.org/10.1145/3437959.3459254

  10. Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents and digital twins in healthcare. J. Med. Syst. 44(9), 161 (2020). https://doi.org/10.1007/s10916-020-01623-5

    Article  Google Scholar 

  11. Eirinakis, P., et al.: Enhancing cognition for digital twins. In: 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–7 (2020)

    Google Scholar 

  12. Fan, C., Zhang, C., Yahja, A., Mostafavi, A.: Disaster city digital twin: a vision for integrating artificial and human intelligence for disaster management. Int. J. Inf. Manag. 56, 102049 (2021)

    Article  Google Scholar 

  13. GE Digital: The digital twin: Compressing time to value for digital industrial companies. Technical Report, GE DIGITAL (2017). https://www.ge.com/digital/sites/default/files/download_assets/The-Digital-Twin_Compressing-Time-to-Value-for-Digital-Industrial-Companies.pdf

  14. Gelernter, D.: Mirror Worlds or the Day Software Puts the Universe in a Shoebox: How Will It Happen and What It Will Mean. Oxford University Press Inc, New York (1991)

    Google Scholar 

  15. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and US air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2012)

    Google Scholar 

  16. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38756-7_4

    Chapter  Google Scholar 

  17. Gutierrez, C., Sequeda, J.F.: Knowledge graphs. Commun. ACM 64(3), 96–104 (2021)

    Article  Google Scholar 

  18. Hribernik, K., Cabri, G., Mandreoli, F., Mentzas, G.: Autonomous, context-aware, adaptive digital twins - state of the art and roadmap. Comput. Ind. 133, 103508 (2021). https://doi.org/10.1016/j.compind.2021.103508

    Article  Google Scholar 

  19. Jennings, N.R.: An agent-based approach for building complex software systems. Commun. ACM 44(4), 35–41 (2001)

    Article  Google Scholar 

  20. Juarez, M.G., Botti, V.J., Giret, A.S.: Digital Twins: Review and Challenges. J. Comput. Inf. Sci. Eng. 21(3) (2021). https://doi.org/10.1115/1.4050244

  21. Kapteyn, M.G., Knezevic, D.J., Willcox, K.: Toward predictive digital twins via component-based reduced-order models and interpretable machine learning. https://doi.org/10.2514/6.2020-0418

  22. Lippi, M., Mariani, S., Zambonelli, F.: Developing a "sense of agency" in IoT systems: preliminary experiments in a smart home scenario. In: 19th IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events, PerCom Workshops 2021, Kassel, Germany, 22–26 March 2021, pp. 44–49. IEEE (2021). https://doi.org/10.1109/PerComWorkshops51409.2021.9431003

  23. Liu, Y., et al.: A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 7, 49088–49101 (2019)

    Article  Google Scholar 

  24. Mariani, S., Omicini, A.: Anticipatory coordination in socio-technical knowledge-intensive environments: behavioural implicit communication in \({MoK}\). In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS (LNAI), vol. 9336, pp. 102–115. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24309-2_8

    Chapter  Google Scholar 

  25. Minerva, R., Crespi, N.: Digital twins: Properties, software frameworks, and application scenarios. IT Professional 23(1), 51–55 (2021). https://doi.org/10.1109/MITP.2020.2982896

    Article  Google Scholar 

  26. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–1824 (2020)

    Article  Google Scholar 

  27. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A &A meta-model for multi-agent systems. Auton. Agent. Multi-Agent Syst. 17(3), 432–456 (2008)

    Article  Google Scholar 

  28. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts: Environment-based coordination for intelligent agents. In: Proc. of the 3rd Int. Joint Conference on Autonomous Agents and Multiagent Systems, pp. 286–293. AAMAS 2004, IEEE Computer Society, USA (2004)

    Google Scholar 

  29. Orozco-Romero, A., Arias-Portela, C.Y., Saucedo, J.E.A.M.: The use of agent-based models boosted by digital twins in the supply chain: a literature review. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2019. AISC, vol. 1072, pp. 642–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_62

    Chapter  Google Scholar 

  30. Papacharalampopoulos, A., Stavropoulos, P., Petrides, D.: Towards a digital twin for manufacturing processes: applicability on laser welding. Procedia CIRP 88, 110–115 (2020). https://doi.org/10.1016/j.procir.2020.05.020

    Article  Google Scholar 

  31. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR’91). Cambridge, MA, USA, 22–25 April 1991, pp. 473–484. Morgan Kaufmann (1991)

    Google Scholar 

  32. Ricci, A., Croatti, A., Mariani, S., Montagna, S., Picone, M.: Web of digital twins. ACM Trans. Internet Technol. (2021). https://doi.org/10.1145/3507909, Just Accepted

  33. Ricci, A., Piunti, M., Tummolini, L., Castelfranchi, C.: The mirror world: preparing for mixed-reality living. IEEE Pervasive Comput. 14(2), 60–63 (2015)

    Article  Google Scholar 

  34. Saracco, R.: Digital twins: bridging physical space and cyberspace. Computer 52(12), 58–64 (2019)

    Article  Google Scholar 

  35. Shahat, E., Hyun, C.T., Yeom, C.: City digital twin potentials: a review and research agenda. Sustainability 13(6) (2021)

    Google Scholar 

  36. Stary, C.: Digital twin generation: re-conceptualizing agent systems for behavior-centered cyber-physical system development. Sensors 21(4), 1096 (2021)

    Article  Google Scholar 

  37. Tao, F., Qi, Q.: Make more digital twins. Nature 573(7775), 490–491 (2019)

    Article  Google Scholar 

  38. Tao, F., Zhang, M., Nee, A.: Chapter 1 - background and concept of digital twin. In: Tao, F., Zhang, M., Nee, A. (eds.) Digital Twin Driven Smart Manufacturing, pp. 3–28. Academic Press (2019). https://doi.org/10.1016/B978-0-12-817630-6.00001-1

  39. Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: realizing the cyber-physical production system for Industry 4.0. Procedia Cirp 61, 335–340 (2017)

    Google Scholar 

  40. Valckenaers, P.: ARTI reference architecture – PROSA revisited. In: Borangiu, T., Trentesaux, D., Thomas, A., Cavalieri, S. (eds.) SOHOMA 2018. SCI, vol. 803, pp. 1–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03003-2_1

    Chapter  Google Scholar 

  41. Wan, H., David, M., Derigent, W.: Modelling digital twins as a recursive multi-agent architecture: application to energy management of communicating materials. IFAC-PapersOnLine 54(1), 880–885 (2021). https://doi.org/10.1016/j.ifacol.2021.08.104

    Article  Google Scholar 

  42. Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in multi-agent systems. Auton. Agent. Multi-Agent Syst. 14(1), 5–30 (2007)

    Article  Google Scholar 

  43. Ye, D., He, Q., Wang, Y., Yang, Y.: An agent-based integrated self-evolving service composition approach in networked environments. IEEE Trans. Serv. Comput. 12(6), 880–895 (2019). https://doi.org/10.1109/TSC.2016.2631598

    Article  Google Scholar 

  44. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems: the gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees and the EMAS community for their insightful comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mariani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mariani, S., Picone, M., Ricci, A. (2022). About Digital Twins, Agents, and Multiagent Systems: A Cross-Fertilisation Journey. In: Melo, F.S., Fang, F. (eds) Autonomous Agents and Multiagent Systems. Best and Visionary Papers. AAMAS 2022. Lecture Notes in Computer Science(), vol 13441. Springer, Cham. https://doi.org/10.1007/978-3-031-20179-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20179-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20178-3

  • Online ISBN: 978-3-031-20179-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics