Skip to main content

Investigation of the Electrical Parameters of an Advanced High-Energy Ignition System

  • Conference paper
  • First Online:
Smart Technologies in Urban Engineering (STUE 2022)

Abstract

We studied electrical parameters of the ignition system generating a self-stabilized high-voltage pulsed arc We observed 2 current pulses generated by the system. The first current pulse appears in the time interval 0 to 3 μs as a consequence of a high-voltage pulse (about 20 kV) supplied to the spark gap. The discharge current after the first current pulse gradually increases up to 3 ± 1 A, when the second current pulse appears. The delay between two current pulses increases with growing spark gap size from 60 to 125 µs, corresponding to gap size 0.5 mm and 13 mm, respectively. The energy input in the developed ignition system is given by the discharging of two capacitors. The total energy released in the first current pulse does not exceed 163 mJ. The experimental-computational method was used to measure the energy input for the second pulse. It was found out that the main part of the discharge energy is released in the second current pulse where the deposited energy exceeds 231–541 mJ. Relatively high efficiency of energy deposition in the gas discharge channel up to 58% was observed, increasing with expanding spark gap size to 13 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dale, J.D., Checkel, M.D., Smy, P.R.: Application of high energy ignition systems to engines. Prog. Energy Combust. Sci. 23(5–6), 379–398 (1997). https://doi.org/10.1016/S0360-1285(97)00011-7

    Article  Google Scholar 

  2. Jose, J.V., Sreenath, V.R.: Review on performance of high energy ignition techniques. Int. J. Res. Innov. Sci. Technol. 2(2), 7–13 (2015)

    Google Scholar 

  3. Hayashi, N., Sugiura, A., Abe, Y., Suzuki, K.: Development of ignition technology for dilute combustion engines. SAE Int. J. Engines 10(3), 984–995 (2017). https://doi.org/10.4271/2017-01-0676

    Article  Google Scholar 

  4. Plankovskyy, S., Popov, V., Shypul, O., et al.: Advanced thermal energy method for finishing precision parts. In: Gupta, K., Pramanik, A. (eds.) Advanced Machining and Finishing, pp. 527–575. Elsevier, Amsterdam (2021). https://doi.org/10.1016/B978-0-12-817452-4.00014-2

  5. Korohodskyi, V., Kryshtopa, S., Migal, V., et al.: Determining the characteristics for the rational adjusting of an fuel-air mixture composition in a two-stroke engine with internal mixture formation. East.-Eur. J. Ent. Tech. 2(5–104), 39–52 (2020). https://doi.org/10.15587/1729-4061.2020.200766

  6. Watanabe, Y., Houpt, A., Leonov, S.B.: Plasma-assisted control of supersonic flow over a compression ramp. Aerospace 6(3), 35 (2019). https://doi.org/10.3390/aerospace6030035

    Article  Google Scholar 

  7. Korytchenko, K.V., Kasimov, A.M., Golota, V.I., et al.: Experimental investigation of arc column expansion generated by high-energy spark ignition system. Prob. Atomic Sci. Technol. 118(6), 225–228 (2018)

    Google Scholar 

  8. Samoilenko, D., Połaniecki, A., Szost, K., et al.: Influence of high velocity flow on self-stabilized spark discharge of high-energy ignition system. In: 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS), pp. 313–316. IEEE, Istanbul (2020). https://doi.org/10.1109/IEPS51250.2020.9263239

  9. Shimojo, H., Inamura, T.: Spark plug igniter comprising a DC-DC converter. US Patent 4,136,301, 7 Jan 1977

    Google Scholar 

  10. Porreca, P.J., VanDuyne, E.A.: Dual energy ignition system. US Patent 5,197,448, 23 Aug 1991

    Google Scholar 

  11. Essmann, S., Markus, D., Maas, U.: Investigation of the spark channel of electrical discharges near the minimum ignition energy. Plasma Phys. Technol. 3(3), 116–121 (2016). https://doi.org/10.14311/ppt.2016.3.116

  12. Camilli, L.S., Gonnella, J.E., Jacobs, T.J.: Improvement in spark-ignition engine fuel consumption and cyclic variability with pulsed energy spark plug. SAE Technical Paper 2012-01-1151 (2012). https://doi.org/10.4271/2012-01-1151

  13. Lakshmipathi, S.M., Deshpande, S.: Evaluation of spark plug energy and efficiency for two wheeler ignition system. SAE Technical Paper 2019-26-0330 (2019). https://doi.org/10.4271/2019-26-0330

  14. Jacobs, T.J., Camilli, L.J., Gonnella, J.E.: Improvement in lean homogenous spark-ignition combustion with pulsed energy spark plug. In: Internal Combustion Engine Division Fall Technical Conference, vol. 55096, pp. 439–445. ASME, Vancouver (2012). https://doi.org/10.1115/ICEF2012-92165

  15. Korytchenko, K.V., Shypul, O.V., Samoilenko, D., et al.: Numerical simulation of gap length influence on energy deposition in spark discharge. Electr. Eng. Electromech. 1, 35–43 (2021). https://doi.org/10.20998/2074-272X.2021.1.06

  16. Morris, N.M.: Transients in electrical circuits. In: Mastering Mathematics for Electrical and Electronic Engineering. MMS, pp. 283–310. Palgrave, London (1994). https://doi.org/10.1007/978-1-349-13193-8_14

  17. Raizer, Y.P.: Gas Discharge Physics. Springer, Berlin, Heidelberg (1991)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Shypul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korytchenko, K., Janda, M., Shypul, O., Krivosheev, S., Yeresko, O. (2023). Investigation of the Electrical Parameters of an Advanced High-Energy Ignition System. In: Arsenyeva, O., Romanova, T., Sukhonos, M., Tsegelnyk, Y. (eds) Smart Technologies in Urban Engineering. STUE 2022. Lecture Notes in Networks and Systems, vol 536. Springer, Cham. https://doi.org/10.1007/978-3-031-20141-7_17

Download citation

Publish with us

Policies and ethics