Skip to main content

HuMMan: Multi-modal 4D Human Dataset for Versatile Sensing and Modeling

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

4D human sensing and modeling are fundamental tasks in vision and graphics with numerous applications. With the advances of new sensors and algorithms, there is an increasing demand for more versatile datasets. In this work, we contribute HuMMan, a large-scale multi-modal 4D human dataset with 1000 human subjects, 400k sequences and 60M frames. HuMMan has several appealing properties: 1) multi-modal data and annotations including color images, point clouds, keypoints, SMPL parameters, and textured meshes; 2) popular mobile device is included in the sensor suite; 3) a set of 500 actions, designed to cover fundamental movements; 4) multiple tasks such as action recognition, pose estimation, parametric human recovery, and textured mesh reconstruction are supported and evaluated. Extensive experiments on HuMMan voice the need for further study on challenges such as fine-grained action recognition, dynamic human mesh reconstruction, point cloud-based parametric human recovery, and cross-device domain gaps (Homepage: https://caizhongang.github.io/projects/HuMMan/).

Z. Cai, D. Ren, A. Zeng, Z. Lin, T. Yu and W. Wang—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1446–1455 (2015)

    Google Scholar 

  2. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3D people models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8387–8397 (2018)

    Google Scholar 

  3. Andriluka, M., et al.: PoseTrack: a benchmark for human pose estimation and tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5167–5176 (2018)

    Google Scholar 

  4. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  5. Bhatnagar, B.L., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Combining implicit function learning and parametric models for 3D human reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 311–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_19

    Chapter  Google Scholar 

  6. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  7. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6233–6242 (2017)

    Google Scholar 

  8. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  9. Cai, Z., et al.: Playing for 3D human recovery. arXiv preprint arXiv:2110.07588 (2021)

  10. Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23

    Chapter  Google Scholar 

  11. Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987 (2019)

  12. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G.G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

  13. Choi, H., Moon, G., Lee, K.M.: Beyond static features for temporally consistent 3D human pose and shape from a video. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  14. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5556–5565 (2015)

    Google Scholar 

  15. Chung, J., Wuu, C.H., Yang, H.R., Tai, Y.W., Tang, C.K.: HAA500: human-centric atomic action dataset with curated videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13465–13474 (2021)

    Google Scholar 

  16. Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)

    Google Scholar 

  17. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  18. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010). https://doi.org/10.1109/TPAMI.2009.161

    Article  Google Scholar 

  19. Gal, R., Wexler, Y., Ofek, E., Hoppe, H., Cohen-Or, D.: Seamless montage for texturing models. In: Computer Graphics Forum, vol. 29, no. 2, pp. 479–486 (2010). https://doi.org/10.1111/j.1467-8659.2009.01617.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01617.x

  20. Georgakis, G., Li, R., Karanam, S., Chen, T., Košecká, J., Wu, Z.: Hierarchical kinematic human mesh recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 768–784. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_45

    Chapter  Google Scholar 

  21. Gu, C., et al.: AVA: a video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6047–6056 (2018)

    Google Scholar 

  22. Guler, R.A., Kokkinos, I.: HoloPose: holistic 3D human reconstruction in-the-wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10884–10894 (2019)

    Google Scholar 

  23. Habermann, M., Liu, L., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: Real-time deep dynamic characters. ACM Trans. Graph. (TOG) 40(4), 1–16 (2021)

    Article  Google Scholar 

  24. Habermann, M., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: LiveCap: real-time human performance capture from monocular video. ACM Trans. Graph. (TOG) 38(2), 1–17 (2019)

    Article  Google Scholar 

  25. Habermann, M., Xu, W., Zollhofer, M., Pons-Moll, G., Theobalt, C.: DeepCap: monocular human performance capture using weak supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5052–5063 (2020)

    Google Scholar 

  26. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

    Article  MATH  Google Scholar 

  27. Hu, J.F., Zheng, W.S., Lai, J., Zhang, J.: Jointly learning heterogeneous features for RGB-D activity recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5344–5352 (2015)

    Google Scholar 

  28. Huang, F., Zeng, A., Liu, M., Lai, Q., Xu, Q.: DeepFuse: an IMU-aware network for real-time 3D human pose estimation from multi-view image. arXiv preprint arXiv:1912.04071 (2019)

  29. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Article  Google Scholar 

  30. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7718–7727 (2019)

    Google Scholar 

  31. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568 (2011)

    Google Scholar 

  32. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3192–3199 (2013)

    Google Scholar 

  33. Jiang, H., Cai, J., Zheng, J.: Skeleton-aware 3D human shape reconstruction from point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5431–5441 (2019)

    Google Scholar 

  34. Jin, S., et al.: Whole-body human pose estimation in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 196–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_12

    Chapter  Google Scholar 

  35. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3334–3342 (2015)

    Google Scholar 

  36. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  37. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)

    Google Scholar 

  38. Karashchuk, P., et al.: Anipose: a toolkit for robust markerless 3D pose estimation. Cell Rep. 36(13), 109730 (2021)

    Article  Google Scholar 

  39. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  40. Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. 32(3) (2013). https://doi.org/10.1145/2487228.2487237

  41. Kazhdan, M., Chuang, M., Rusinkiewicz, S., Hoppe, H.: Poisson surface reconstruction with envelope constraints. In: Computer Graphics Forum (Proceedings of the Symposium on Geometry Processing), vol. 39, no. 5, July 2020

    Google Scholar 

  42. Kazhdan, M., Chuang, M., Rusinkiewicz, S., Hoppe, H.: Poisson surface reconstruction with envelope constraints. In: Computer Graphics Forum, vol. 39, pp. 173–182. Wiley Online Library (2020)

    Google Scholar 

  43. Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)

    Google Scholar 

  44. Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: PARE: part attention regressor for 3D human body estimation. arXiv preprint arXiv:2104.08527 (2021)

  45. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  46. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  47. Li, J., et al.: Human pose regression with residual log-likelihood estimation. In: ICCV (2021)

    Google Scholar 

  48. Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: HybrIK: a hybrid analytical-neural inverse kinematics solution for 3D human pose and shape estimation. In: CVPR, pp. 3383–3393. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  49. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13401–13412 (2021)

    Google Scholar 

  50. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 9–14. IEEE (2010)

    Google Scholar 

  51. Li, Y.L., et al.: HAKE: a knowledge engine foundation for human activity understanding (2022)

    Google Scholar 

  52. Li, Z., Yu, T., Zheng, Z., Liu, Y.: Robust and accurate 3D self-portraits in seconds. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2021). https://doi.org/10.1109/TPAMI.2021.3113164

  53. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  54. Liu, G., Rong, Y., Sheng, L.: VoteHMR: occlusion-aware voting network for robust 3D human mesh recovery from partial point clouds. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 955–964 (2021)

    Google Scholar 

  55. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2684–2701 (2019)

    Article  Google Scholar 

  56. Lombardi, S., Saragih, J., Simon, T., Sheikh, Y.: Deep appearance models for face rendering 37(4) (2018). https://doi.org/10.1145/3197517.3201401

  57. Loper, M., Mahmood, N., Black, M.J.: MoSh: motion and shape capture from sparse markers. ACM Trans. Graph. (TOG) 33(6), 1–13 (2014)

    Article  Google Scholar 

  58. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  59. Luo, Z., Golestaneh, S.A., Kitani, K.M.: 3D human motion estimation via motion compression and refinement. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  60. Ma, Q., et al.: Learning to dress 3D people in generative clothing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6469–6478 (2020)

    Google Scholar 

  61. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5442–5451 (2019)

    Google Scholar 

  62. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  63. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  64. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 2017 International Conference on 3D Vision (3DV), pp. 506–516. IEEE (2017)

    Google Scholar 

  65. Mehta, D., et al.: XNect: real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. (TOG) 39(4), 82-1 (2020)

    Google Scholar 

  66. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  67. Monfort, M., et al.: Moments in time dataset: one million videos for event understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 502–508 (2019)

    Article  Google Scholar 

  68. Moon, G., Lee, K.M.: I2L-MeshNet: image-to-lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 752–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_44

    Chapter  Google Scholar 

  69. Muller, L., Osman, A.A., Tang, S., Huang, C.H.P., Black, M.J.: On self-contact and human pose. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9990–9999 (2021)

    Google Scholar 

  70. Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352 (2015)

    Google Scholar 

  71. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  72. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: unifying deep learning and model based human pose and shape estimation. In: 2018 International Conference on 3D Vision (3DV), pp. 484–494. IEEE (2018)

    Google Scholar 

  73. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: sparse trained articulated human body regressor. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 598–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_36

    Chapter  Google Scholar 

  74. Patel, P., Huang, C.H.P., Tesch, J., Hoffmann, D.T., Tripathi, S., Black, M.J.: AGORA: avatars in geography optimized for regression analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13468–13478 (2021)

    Google Scholar 

  75. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10975–10985 (2019)

    Google Scholar 

  76. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 459–468 (2018)

    Google Scholar 

  77. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)

    Google Scholar 

  78. Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: CVPR (2021)

    Google Scholar 

  79. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  80. Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W.: Cross view fusion for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4342–4351 (2019)

    Google Scholar 

  81. Raj, A., Tanke, J., Hays, J., Vo, M., Stoll, C., Lassner, C.: ANR-articulated neural rendering for virtual avatars. arXiv:2012.12890 (2020)

  82. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  83. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  84. Shao, D., Zhao, Y., Dai, B., Lin, D.: FineGym: a hierarchical video dataset for fine-grained action understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2616–2625 (2020)

    Google Scholar 

  85. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks. arXiv preprint arXiv:1912.06971 (2019)

  86. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks. IEEE Trans. Image Process. 29, 9532–9545 (2020)

    Article  MATH  Google Scholar 

  87. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  88. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  89. Sun, Y., Ye, Y., Liu, W., Gao, W., Fu, Y., Mei, T.: Human mesh recovery from monocular images via a skeleton-disentangled representation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5349–5358 (2019)

    Google Scholar 

  90. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3323035

  91. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5552–5561 (2019)

    Google Scholar 

  92. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  93. Trivedi, N., Thatipelli, A., Sarvadevabhatla, R.K.: NTU-X: an enhanced large-scale dataset for improving pose-based recognition of subtle human actions. arXiv preprint arXiv:2101.11529 (2021)

  94. Trumble, M., Gilbert, A., Malleson, C., Hilton, A., Collomosse, J.P.: Total capture: 3D human pose estimation fusing video and inertial sensors. In: BMVC, vol. 2, pp. 1–13 (2017)

    Google Scholar 

  95. Waechter, M., Moehrle, N., Goesele, M.: Let there be color! Large-scale texturing of 3D reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 836–850. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_54

    Chapter  Google Scholar 

  96. Wang, J., Nie, X., Xia, Y., Wu, Y., Zhu, S.C.: Cross-view action modeling, learning and recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2649–2656 (2014)

    Google Scholar 

  97. Wang, S., Geiger, A., Tang, S.: Locally aware piecewise transformation fields for 3D human mesh registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7639–7648 (2021)

    Google Scholar 

  98. Xiang, D., et al.: Modeling clothing as a separate layer for an animatable human avatar. ACM Trans. Graph. 40(6) (2021). https://doi.org/10.1145/3478513.3480545

  99. Xu, H., Bazavan, E.G., Zanfir, A., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: GHUM & GHUML: generative 3D human shape and articulated pose models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6184–6193 (2020)

    Google Scholar 

  100. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. arXiv preprint arXiv:1801.07455 (2018)

  101. Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., Liu, Y.: Function4D: real-time human volumetric capture from very sparse consumer RGBD sensors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2021), June 2021

    Google Scholar 

  102. Yu, T., et al.: DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, pp. 7287–7296. IEEE, June 2018

    Google Scholar 

  103. Yu, Z., et al.: HUMBI: a large multiview dataset of human body expressions. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2987–2997 (2020)

    Google Scholar 

  104. Zeng, A., Sun, X., Huang, F., Liu, M., Xu, Q., Lin, S.: SRNet: improving generalization in 3D human pose estimation with a split-and-recombine approach. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_30

    Chapter  Google Scholar 

  105. Zeng, A., Sun, X., Yang, L., Zhao, N., Liu, M., Xu, Q.: Learning skeletal graph neural networks for hard 3D pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  106. Zeng, A., Yang, L., Ju, X., Li, J., Wang, J., Xu, Q.: SmoothNet: a plug-and-play network for refining human poses in videos. arXiv preprint arXiv:2112.13715 (2021)

  107. Zhang, C., Pujades, S., Black, M.J., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4191–4200 (2017)

    Google Scholar 

  108. Zhang, W., Zhu, M., Derpanis, K.G.: From actemes to action: a strongly-supervised representation for detailed action understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2248–2255 (2013)

    Google Scholar 

  109. Zhang, Y., Li, Z., An, L., Li, M., Yu, T., Liu, Y.: Lightweight multi-person total motion capture using sparse multi-view cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5560–5569, October 2021

    Google Scholar 

  110. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  111. Zhao, H., Torralba, A., Torresani, L., Yan, Z.: HACS: human action clips and segments dataset for recognition and temporal localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8668–8678 (2019)

    Google Scholar 

  112. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3D human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)

    Google Scholar 

  113. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3D human reconstruction from a single image. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

Download references

Acknowledgements

This work is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), NSFC No. 62171255, and under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Yang or Ziwei Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19008 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Z. et al. (2022). HuMMan: Multi-modal 4D Human Dataset for Versatile Sensing and Modeling. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics