Skip to main content

VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13666))

Included in the following conference series:

Abstract

While monocular 3D pose estimation seems to have achieved very accurate results on the public datasets, their generalization ability is largely overlooked. In this work, we perform a systematic evaluation of the existing methods and find that they get notably larger errors when tested on different cameras, human poses and appearance. To address the problem, we introduce VirtualPose, a two-stage learning framework to exploit the hidden “free lunch” specific to this task, i.e.generating infinite number of poses and cameras for training models at no cost. To that end, the first stage transforms images to abstract geometry representations (AGR), and then the second maps them to 3D poses. It addresses the generalization issue from two aspects: (1) the first stage can be trained on diverse 2D datasets to reduce the risk of over-fitting to limited appearance; (2) the second stage can be trained on diverse AGR synthesized from a large number of virtual cameras and poses. It outperforms the SOTA methods without using any paired images and 3D poses from the benchmarks, which paves the way for practical applications. Code is available at https://github.com/wkom/VirtualPose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23

    Chapter  Google Scholar 

  2. Chang, J.Y., Moon, G., Lee, K.M.: Absposelifter: absolute 3D human pose lifting network from a single noisy 2d human pose. CoRR (2019)

    Google Scholar 

  3. Cheng, Y., Wang, B., Tan, R.: Dual networks based 3d multi-person pose estimation from monocular video. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  4. Ci, H., Ma, X., Wang, C., Wang, Y.: Locally connected network for monocular 3D human pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. 44, 1429–1442 (2020)

    Article  Google Scholar 

  5. Ci, H., Wang, C., Ma, X., Wang, Y.: Optimizing network structure for 3D human pose estimation. In: ICCV, pp. 2262–2271 (2019)

    Google Scholar 

  6. Dabral, R., Gundavarapu, N.B., Mitra, R., Sharma, A., Ramakrishnan, G., Jain, A.: Multi-person 3D human pose estimation from monocular images. In: 3dv, pp. 405–414. IEEE (2019)

    Google Scholar 

  7. Fabbri, M., Lanzi, F., Calderara, S., Alletto, S., Cucchiara, R.: Compressed volumetric heatmaps for multi-person 3D pose estimation. In: CVPR, pp. 7204–7213 (2020)

    Google Scholar 

  8. Guo, Y., Ma, L., Li, Z., Wang, X., Wang, F.: Monocular 3d multi-person pose estimation via predicting factorised correction factors. In: Computer Vision and Image Understanding (CVIU), p. 103278 (2021)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale datasets and predictive methods for 3D human sensing in natural environments. PAMI 36(7), 1325–1339 (2013)

    Article  Google Scholar 

  11. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: ICCV (2019)

    Google Scholar 

  12. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: ICCV, pp. 3334–3342 (2015)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  14. Li, S., Ke, L., Pratama, K., Tai, Y.W., Tang, C.K., Cheng, K.T.: Cascaded deep monocular 3d human pose estimation with evolutionary training data. In: CVPR, pp. 6173–6183 (2020)

    Google Scholar 

  15. Lin, J., Lee, G.H.: HDNet: human depth estimation for multi-person camera-space localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 633–648. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_37

    Chapter  Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Ma, X., Su, J., Wang, C., Ci, H., Wang, Y.: Context modeling in 3D human pose estimation: a unified perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6238–6247 (2021)

    Google Scholar 

  18. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  19. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: ICCV, pp. 2640–2649 (2017)

    Google Scholar 

  20. Mehta, D., et al.: Monocular 3d human pose estimation in the wild using improved CNN supervision. In: 3DV, pp. 506–516. IEEE (2017)

    Google Scholar 

  21. Mehta, D., et al.: Xnect: real-time multi-person 3D human pose estimation with a single RGB camera. TOG 39(4) (2020)

    Google Scholar 

  22. Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 3DV, pp. 120–130. IEEE (2018)

    Google Scholar 

  23. Moon, G., Chang, J.Y., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: ICCV, pp. 10133–10142 (2019)

    Google Scholar 

  24. Moreno-Noguer, F.: 3D human pose estimation from a single image via distance matrix regression. In: CVPR, pp. 2823–2832 (2017)

    Google Scholar 

  25. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: CVPR, pp. 7025–7034 (2017)

    Google Scholar 

  26. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: CVPR, pp. 7753–7762 (2019)

    Google Scholar 

  27. Popa, A.I., Zanfir, M., Sminchisescu, C.: Deep multitask architecture for integrated 2D and 3D human sensing. In: CVPR, pp. 6289–6298 (2017)

    Google Scholar 

  28. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-net: localization-classification-regression for human pose. In: CVPR, pp. 3433–3441 (2017)

    Google Scholar 

  29. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-net++: multi-person 2D and 3D pose detection in natural images. PAMI 42(5), 1146–1161 (2019)

    Google Scholar 

  30. Sárándi, I., Linder, T., Arras, K.O., Leibe, B.: Metrabs: metric-scale truncation-robust heatmaps for absolute 3D human pose estimation. IEEE Trans. Biometr. Behav. Ident. Sci. 3(1), 16–30 (2020)

    Article  Google Scholar 

  31. Sigal, L., Balan, A.O., Black, M.J.: Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV 87(1–2), 4 (2010)

    Article  Google Scholar 

  32. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  33. Tu, H., Wang, C., Zeng, W.: VoxelPose: towards multi-camera 3d human pose estimation in wild environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_12

    Chapter  Google Scholar 

  34. Véges, M., Lőrincz, A.: Absolute human pose estimation with depth prediction network. In: IJCNN, pp. 1–7. IEEE (2019)

    Google Scholar 

  35. Véges, M., Lőrincz, A.: Multi-person absolute 3D human pose estimation with weak depth supervision. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12396, pp. 258–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61609-0_21

    Chapter  Google Scholar 

  36. Wandt, B., Rosenhahn, B.: RepNet: weakly supervised training of an adversarial reprojection network for 3D human pose estimation. In: CVPR, pp. 7782–7791 (2019)

    Google Scholar 

  37. Wang, C., Li, J., Liu, W., Qian, C., Lu, C.: HMOR: hierarchical multi-person ordinal relations for monocular multi-person 3D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 242–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_15

    Chapter  Google Scholar 

  38. Wang, C., Wang, Y., Lin, Z., Yuille, A.L.: Robust 3d human pose estimation from single images or video sequences. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1227–1241 (2018)

    Article  Google Scholar 

  39. Wang, C., Wang, Y., Lin, Z., Yuille, A.L., Gao, W.: Robust estimation of 3D human poses from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2361–2368 (2014)

    Google Scholar 

  40. Wu, J., et al.: 3D interpreter networks for viewer-centered wireframe modeling. Int. J. Comput. Vision 126(9), 1009–1026 (2018)

    Article  Google Scholar 

  41. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.: 3D human pose estimation in the wild by adversarial learning. In: CVPR, pp. 5255–5264 (2018)

    Google Scholar 

  42. Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3D pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: CVPR, pp. 2148–2157 (2018)

    Google Scholar 

  43. Zanfir, A., Marinoiu, E., Zanfir, M., Popa, A.I., Sminchisescu, C.: Deep network for the integrated 3d sensing of multiple people in natural images. NIPS 31, 8410–8419 (2018)

    Google Scholar 

  44. Zhang, Y., Wang, C., Wang, X., Liu, W., Zeng, W.: Voxeltrack: multi-person 3D human pose estimation and tracking in the wild. T-PAMI (2022)

    Google Scholar 

  45. Zhang, Z., Wang, C., Qin, W., Zeng, W.: Fusing wearable Imus with multi-view images for human pose estimation: a geometric approach. In: CVPR, pp. 2200–2209 (2020)

    Google Scholar 

  46. Zhang, Z., Wang, C., Qiu, W., Qin, W., Zeng, W.: Adafuse: adaptive multiview fusion for accurate human pose estimation in the wild. IJCV 129(3), 703–718 (2021)

    Article  Google Scholar 

  47. Zhen, J., et al.: SMAP: single-shot multi-person absolute 3D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 550–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_33

    Chapter  Google Scholar 

  48. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: ICCV, pp. 398–407 (2017)

    Google Scholar 

  49. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  50. Zhu, L., Rematas, K., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Reconstructing NBA players. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 177–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_11

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by MOST-2018AAA0102004 and NSFC-62061136001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, J., Wang, C., Ma, X., Zeng, W., Wang, Y. (2022). VirtualPose: Learning Generalizable 3D Human Pose Models from Virtual Data. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20068-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20067-0

  • Online ISBN: 978-3-031-20068-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics