Skip to main content

POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network Controlled Systems

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13505))

Abstract

We present POLAR (The source code can be found at https://github.com/ChaoHuang2018/POLAR_Tool. The full version of this paper can be found at https://arxiv.org/abs/2106.13867.), a POLynomial ARithmetic-based framework for efficient time-bounded reachability analysis of neural-network controlled systems. Existing approaches leveraging the standard Taylor Model (TM) arithmetic for approximating the neural-network controller cannot deal with non-differentiable activation functions and suffer from rapid explosion of the remainder when propagating TMs. POLAR overcomes these shortcomings by integrating TM arithmetic with Bernstein polynomial interpolation and symbolic remainders. The former enables TM propagation across non-differentiable activation functions and local refinement of TMs, and the latter reduces error accumulation in the TM remainder for linear mappings in the neural network. Experimental results show POLAR significantly outperforms the state-of-the-art tools on both efficiency and tightness of the reachable set overapproximation.

C. Huang—Part of the work was done when the author was in Northwestern University, US.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The results of ReachNN* are based on GPU acceleration.

  2. 2.

    These are lower bounds on the improvements since other tools terminated early for certain settings due to explosion of their computed flowpipes.

References

  1. Althoff, M.: An introduction to CORA 2015. In: International Workshop on Applied veRification for Continuous and Hybrid Systems (ARCH). EPiC Series in Computing, vol. 34, pp. 120–151 (2015)

    Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  3. Beard, R.: Quadrotor dynamics and control rev 0.1 (2008)

    Google Scholar 

  4. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4, 361–369 (1998). https://doi.org/10.1023/A:1024467732637

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X.: Reachability analysis of non-linear hybrid systems using taylor models. Ph.D. thesis, RWTH Aachen University (2015)

    Google Scholar 

  6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  7. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In: Proceedings of RTSS 2016, pp. 13–24 (2016)

    Google Scholar 

  8. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback systems using regressive polynomial rule inference. In: Proceedings of HSCC 2019, pp. 157–168. ACM (2019)

    Google Scholar 

  9. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: ReachNN*: a tool for reachability analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 537–542. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_30

    Chapter  Google Scholar 

  10. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  11. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: reachability analysis of neural-network controlled systems. ACM Trans. Embed. Comput. Syst. 18(5s), 106:1-106:22 (2019)

    Article  Google Scholar 

  12. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Divide and slide: layer-wise refinement for output range analysis of deep neural networks. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. (TCAD) 39(11), 3323–3335 (2020)

    Article  Google Scholar 

  13. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0: verification of neural network controllers using Taylor model preconditioning. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_11

    Chapter  MATH  Google Scholar 

  14. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety properties of hybrid systems with neural network controllers. In: Proceedings of HSCC 2018, pp. 169–178. ACM (2019)

    Google Scholar 

  15. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Interval Analysis. Applied Interval Analysis, Springer, Cham (2001). https://doi.org/10.1007/978-1-4471-0249-6_2

    Book  MATH  Google Scholar 

  16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  17. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Lorentz, G.G.: Bernstein Polynomials. American Mathematical Society (2013)

    Google Scholar 

  19. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Meiss, J.D.: Differential Dynamical Systems. SIAM publishers (2007)

    Google Scholar 

  21. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  22. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM (2009)

    Google Scholar 

  23. Prajna, S., Parrilo, P.A., Rantzer, A.: Nonlinear control synthesis by convex optimization. IEEE Trans. Autom. Control 49(2), 310–314 (2004)

    Article  MathSciNet  Google Scholar 

  24. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex barrier for neural network certification. In: Proceedings of NeurIPS 2019, pp. 15072–15083 (2019)

    Google Scholar 

  25. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_1

    Chapter  Google Scholar 

  26. Wang, Z., Huang, C., Zhu, Q.: Efficient global robustness certification of neural networks via interleaving twin-network encoding. In: Proceedings of DAT2 2022 (2022)

    Google Scholar 

  27. Weng, T.W., et al.: Towards fast computation of certified robustness for relu networks. In: Proceedings of ICML 2018 (2018)

    Google Scholar 

  28. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural network robustness certification with general activation functions. In: Proceedings of NeurIPS 2018, pp. 4944–4953 (2018)

    Google Scholar 

  29. Zhu, Q., et al.: Safety-assured design and adaptation of learning-enabled autonomous systems. In: Proceedings of ASPDAC 2021 (2021)

    Google Scholar 

  30. Zhu, Q., et al.: Know the unknowns: addressing disturbances and uncertainties in autonomous systems. In: Proceedings of ICCAD 2020 (2020)

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support from the National Science Foundation awards CCF-1646497, CCF-1834324, CNS-1834701, CNS-1839511, IIS-1724341, CNS-2038853, ONR grant N00014-19-1-2496, and the US Air Force Research Laboratory (AFRL) under contract number FA8650-16-C-2642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, C., Fan, J., Chen, X., Li, W., Zhu, Q. (2022). POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network Controlled Systems. In: Bouajjani, A., Holík, L., Wu, Z. (eds) Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes in Computer Science, vol 13505. Springer, Cham. https://doi.org/10.1007/978-3-031-19992-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19992-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19991-2

  • Online ISBN: 978-3-031-19992-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics