Skip to main content

Data Stream Processing Method for Clustering of Trajectories

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2022)

Abstract

The constant advances in techniques for recording and collecting GPS trajectory information, the increase in the number of devices that collect this type of information such as video cameras, traffic sensors, smart phones, etc., has resulted in a large volume of information. Being able to process this information through data streams that allow intelligent analysis of the data in real time is an area where many researchers are currently making efforts to identify solutions. GPS trajectory clustering techniques allow the identification of vehicle patterns over large volumes of data. This paper presents a method that processes data streams for dynamic clustering of vehicular GPS trajectories. The proposed method here receives a GPS data stream, processes it using a buffer memory and the creation of a grid with the use of indexes, and subsequently analyzes each cell of the grid with the use of a dynamic clustering technique that extracts the characteristics of reduced zones of the study area, visualizing common speed ranges in interactive maps. To validate the proposed method, two data sets from Rome-Italy and Guayaquil-Ecuador were used, and measurements were made of execution time, used memory and silhouette coefficient. The obtained results are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Guayaquil dataset is available at https://github.com/gary-reyes-zambrano/Guayaquil-DataSet.

  2. 2.

    Roma dataset available at https://github.com/gary-reyes-zambrano/Roma-Dataset.

References

  1. Ackermann, M.R., Lammersen, C., Sohler, C., Swierkot, K., Raupach, C.: StreamKM++: a clustering algorithm for data streams. ACM J. Exp. Algorithmics 17, 173–187 (2012)

    Article  MathSciNet  Google Scholar 

  2. Aggarwal, C.C.: Data streams: an overview and scientific applications. In: Gaber, M. (ed.) Scientific Data Mining and Knowledge Discovery. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-02788-8

    Chapter  Google Scholar 

  3. Aggarwal, C.C., Yu, P.S., Han, J., Wang, J.: A framework for clustering evolving data streams. In: Freytag, J.C., Lockemann, P., Abiteboul, S., Carey, M., Selinger, P., Heuer, A. (eds.) Proceedings 2003 VLDB Conference, pp. 81–92. Morgan Kaufmann, San Francisco (2003). https://doi.org/10.1016/B978-012722442-8/50016-1, www.sciencedirect.com/science/article/pii/B9780127224428500161

  4. Ahmed, R.: Stream clustering (2020). https://doi.org/10.13140/RG.2.2.18295.04007

  5. Babcock, B., Widom, J.: Models and Issues in Data Stream Systems (2002)

    Google Scholar 

  6. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means++ (2012)

    Google Scholar 

  7. Barbosa Roa, N., Travé-Massuyès, L., Grisales-Palacio, V.H.: DyClee: dynamic clustering for tracking evolving environments. Pattern Recognit. 94, 162–186 (2019). https://doi.org/10.1016/j.patcog.2019.05.024https://www.sciencedirect.com/science/article/pii/S0031320319301992

  8. Choong, M.Y., Chin, R.K.Y., Yeo, K.B., Teo, K.T.K.: Trajectory pattern mining via clustering based on similarity function for transportation surveillance. Int. J. Simul.-Syst. Sci. Technol. 17(34), 1–19 (2016)

    Google Scholar 

  9. Dafir, Z., Lamari, Y., Slaoui, S.C.: A survey on parallel clustering algorithms for big data. Artif. Intell. Rev. 54(4), 2411–2443 (2021). https://doi.org/10.1007/s10462-020-09918-2

    Article  Google Scholar 

  10. Ding, S., Wu, F., Qian, J., Jia, H., Jin, F.: Research on data stream clustering algorithms. Artif. Intell. Rev. 43(4), 593–600 (2015). https://doi.org/10.1007/s10462-013-9398-7

    Article  Google Scholar 

  11. Ferreira, N., Klosowski, J.T., Scheidegger, C., Silva, C.: Vector field k-means: Clustering trajectories by fitting multiple vector fields (2012)

    Google Scholar 

  12. Fotakis, D., Piliouras, G., Skoulakis, S.: Efficient online learning for dynamic k-clustering (2021). arXiv:2106.04336, https://doi.org/10.48550/ARXIV.2106.04336

  13. Garofalakis, M., Gehrke, J., Rastogi, R.: Data Stream Management (2016)

    Google Scholar 

  14. Han, J., Kamber, M., Tung, A.K.: Spatial clustering methods in data mining. Geographic data mining and knowledge discovery, pp. 188–217 (2001)

    Google Scholar 

  15. Han, P., Wang, W., Shi, Q., Yue, J.: A combined online-learning model with k-means clustering and GRU neural networks for trajectory prediction. Ad Hoc Networks 117, 102476 (2021). https://linkinghub.elsevier.com/retrieve/pii/S1570870521000433, https://doi.org/10.1016/j.adhoc.2021.102476

  16. Hu, H., Lee, G., Kim, J.H., Shin, H.: Estimating micro-level on-road vehicle emissions using the k-means clustering method with GPS big data. Electronics 9(12), 2151 (2020)

    Google Scholar 

  17. Jain, A.: Data clustering: 50 years beyond k-means. 2009. Pattern Recognition Letters (2009)

    Google Scholar 

  18. Kim, J., Mahmassani, H.S.: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Transp. Res. Procedia 9, 164–184 (2015)

    Article  Google Scholar 

  19. Kolajo, T., Daramola, O., Adebiyi, A.: Big data stream analysis: a systematic literature review. J. Big Data 6(1), 47 (2019). https://doi.org/10.1186/s40537-019-0210-7

    Article  Google Scholar 

  20. Lou, J., Cheng, A.: Behavior from Vehicle GPS/GNSS Data. Sensors (2020)

    Google Scholar 

  21. Luo, T., Zheng, X., Xu, G., Fu, K., Ren, W.: An improved DBSCAN algorithm to detect stops in individual trajectories. ISPRS Int. J. Geo-Inf. 6(3), 63 (2017). www.mdpi.com/2220-9964/6/3/63, https://doi.org/10.3390/ijgi6030063

  22. Madhulatha, T.S.: An overview on clustering methods. arXiv preprint arXiv:1205.1117 (2012)

  23. Mao, J., Song, Q., Jin, C., Zhang, Z., Zhou, A.: Online clustering of streaming trajectories. Front. Comput. Sci. 12(2), 245–263 (2018). https://doi.org/10.1007/s11704-017-6325-0

    Article  Google Scholar 

  24. Mazimpaka, J.D., Timpf, S.: Trajectory data mining: a review of methods and applications. J. Spat. Inf. Sci. 2016(13), 61–99 (2016)

    Google Scholar 

  25. Paulino, D.C., Guimarães, L.N.F., Shiguemori, E.H.: Hybrid adaptive computational intelligence-based multisensor data fusion applied to real-time UAV autonomous navigation. Inteligencia Artif. 22(63), 162–195 (2019). https://journal.iberamia.org/index.php/intartif/article/view/237, https://doi.org/10.4114/intartif.vol22iss63pp162-195

  26. Reyes, G., Lanzarini, L., Estrebou, C., Maquilón, V.: Vehicular flow analysis using clusters, pp. 261–270 (2021)

    Google Scholar 

  27. Reyes, G., Lanzarini, L., Hasperué, W., Bariviera, A.F.: GPS trajectory clustering method for decision making on intelligent transportation systems. J. Intell. Fuzzy Syst. 38(5), 5529–5535 (2020). www.medra.org/servlet/aliasResolver?alias=iospress &doi=10.3233/JIFS-179644, https://doi.org/10.3233/JIFS-179644

  28. Reyes, G., Lanzarini, L., Hasperué, W., Bariviera, A.F.: Proposal for a pivot-based vehicle trajectory clustering method. Transp. Res. Rec. 2676(4), 281–295 (2022). https://doi.org/10.1177/03611981211058429

    Article  Google Scholar 

  29. Reyes, G., Maquilón, V., Estrada, V.: Relationships of compression ratio and error in trajectory simplification algorithms. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Jácome-Murillo, E. (eds.) Technologies and Innovation, pp. 140–155. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  30. Tork, H.F.: Spatio-temporal clustering methods classification. In: Doctoral Symposium on Informatics Engineering, vol. 1, pp. 199–209. Faculdade de Engenharia da Universidade do Porto Porto, Portugal (2012)

    Google Scholar 

  31. Varghese, B.M., Unnikrishnan, A., Jacob, K.: Spatial clustering algorithms-an overview. Asian J. Comput. Sci. Inf. Technol. 3(1), 1–8 (2013)

    Google Scholar 

  32. Wang, H., Sha, Y., Wang, D., Nazari, H.: A gene expression clustering method to extraction of cell-to-cell biological communication. Inteligencia Artif. 25(69), 1–12 (2022). https://journal.iberamia.org/index.php/intartif/article/view/701, https://doi.org/10.4114/intartif.vol25iss69pp1-12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reyes, G., Lanzarini, L., Estrebou, C., Bariviera, A. (2022). Data Stream Processing Method for Clustering of Trajectories. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Jácome-Murillo, E. (eds) Technologies and Innovation. CITI 2022. Communications in Computer and Information Science, vol 1658. Springer, Cham. https://doi.org/10.1007/978-3-031-19961-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19961-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19960-8

  • Online ISBN: 978-3-031-19961-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics