Skip to main content

On Application of Solar Collectors in Dairy Farms

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2022)

Abstract

Using of renewable energy sources at agricultural production facilities not only increases the efficiency of production, but also improves the environmental aspects of farming. In this paper, the main thermal processes are considered, their functioning can be fully or partially ensured through the use of solar collectors. The review of existing solar collectors and their characteristics is carried out. Conclusions are drawn about the possibility of using various designs on dairy farms. The directions of further researches are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tikhomirov, D., Vasilyev, A.N., Budnikov, D., Vasilyev, A.A.: Energy-saving automated system for microclimate in agricultural premises with utilization of ventilation air. Wireless Netw. 26(7), 4921–4928 (2019). https://doi.org/10.1007/s11276-019-01946-3

    Article  Google Scholar 

  2. Tikhomirov, D., Vasilyev, A.N., Budnikov, D., Vasilyev, A.A.: Energy-Saving Device for Microclimate Maintenance with Utilization of Low-Grade Heat. In: Vasant, P., Litvinchev, I., Marmolejo-Saucedo, J.A. (eds.) Innovative Computing Trends and Applications. EICC, pp. 31–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03898-4_4

    Chapter  Google Scholar 

  3. Strebkov, D., Yu, S.: Improving the efficiency of solar power plants. Eng. Technol. Syst. 30(3), 480–497 (2020). https://doi.org/10.15507/2658-4123.030.202003.480-497

    Article  Google Scholar 

  4. Alarcón- Villamil, A., Hortúa, J., López, A.: Comparison of thermal solar collector technologies and their applications. TECCIENCIA 8(15), 27–35 (2013). https://doi.org/10.18180/tecciencia.2013.15.3

    Article  Google Scholar 

  5. Klychev, S., Bakhramov, S.A., Kharchenko, V., Panchenko, V.: Research of heat losses of solar collectors and heat accumulators. Int. J. Energy Optim. Eng. 10(3), 85–103 (2021). https://doi.org/10.4018/IJEOE.2021070105

    Article  Google Scholar 

  6. Kharchenko, V., Panchenko, V., Tikhonov, P.V., Vasant, P.: Cogenerative PV Thermal Modules of Different Design for Autonomous Heat and Electricity Supply. Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, IGI Global, Hershey, pp. 86 – 119 (2018). https://doi.org/10.4018/978-1-5225-3867-7.ch004

  7. Zielinko, P., Krawczyk, D.A.: Comparison of the efficiency of solar collectors in terms of the working medium—review of selected technical solutions. Environ. Sci. Proc. 9, 5 (2021). https://doi.org/10.3390/environsciproc2021009005

    Article  Google Scholar 

  8. Panchenko, V., Kharchenko, V., Vasant, P.: Modeling of Solar Photovoltaic Thermal Modules. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2018. AISC, vol. 866, pp. 108–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00979-3_11

    Chapter  Google Scholar 

  9. Ma, Z., Bao, H., Roskilly, A.P.: Feasibility study of seasonal solar thermal energy storage in domestic dwellings in the UK. Sol. Energy, 162, 489–499 (2018)

    Google Scholar 

  10. Herrando, M., Ramos, A., Freeman, J., Zabalza, I., Markides, C., N.: Technoeconomic modelling and optimisation of solar combined heat and power systems based on flat-box PVT collectors for domestic applications. Energy Convers. Manage. 175, 67–85 (2018). https://doi.org/10.1016/j.enconman.2018.07.045

    Article  Google Scholar 

  11. Klychev, S.I., Bakhramov, S.A., Kharchenko, V.V., Nuriddinov, K., Kadyrgulov, D.E.: Features of convective heat-exchange in flat-plate solar water-heating collectors. Appl. Solar Energy 55(5), 321–326 (2019). https://doi.org/10.3103/S0003701X19050062

    Article  Google Scholar 

  12. Babaev, B.D., Kharchenko, V.V., Panchenko, V.: Development and Research of Phase-Transition and Thermochemical Materials for Heat Accumulation. Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering. IGI Global, Hershey, pp. 1–26 (2019). https://doi.org/10.4018/978-1-7998-1216-6.ch001

  13. Schramm, S., Adam, M.: Storage in solar process heat applications. Energy Procedia 48, 1202–1209 (2014). https://doi.org/10.1016/j.egypro.2014.02.136

    Article  Google Scholar 

  14. Panchenko, V.A.: Solar roof panels for electric and thermal generation. Appl. Solar Energy 54(5), 350–353 (2018). https://doi.org/10.3103/S0003701X18050146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Purtova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Purtova, A., Budnikov, D., Panchenko, V. (2023). On Application of Solar Collectors in Dairy Farms. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_71

Download citation

Publish with us

Policies and ethics