Skip to main content

What Can Nonhuman Animals, Children, and g Tell Us About Human-Level Artificial General Intelligence (AGI)?

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13539))

Included in the following conference series:

Abstract

Human-level artificial general intelligence is one of the grandest challenges in science. All evidence should therefore be brought to bear. Here, I summarize highly relevant work from comparative psychology, human intelligence, and developmental psychology. The comparative research points to a set of abilities proposed to separate humans from other animals; then, especially from the human intelligence field and the concept of the general factor g, abstract relational reasoning singles out. Deeper considerations of g suggest how abstract relational reasoning may underpin human cognitive processing itself. Developmental psychology helps clarify what that may mean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kralik, J.D.: Toward a comprehensive list of necessary abilities for human intelligence, Part 1: constructing knowledge. In: Proc. 15th Conf. on Artificial General Intelligence (2022)

    Google Scholar 

  2. Kralik, J.D.: Toward a comprehensive list of necessary abilities for human intelligence, Part 2: using knowledge. In: Proc. 15th Conf. on Artificial General Intelligence (2022).

    Google Scholar 

  3. Goertzel, B.: Artificial general intelligence: concept, state of the art, and future prospects. Journal of Artificial General Intelligence 5, 1–46 (2014)

    Article  Google Scholar 

  4. Russell, S., Norvig, P.: Artificial Intelligence. Prentice Hall (2020)

    Google Scholar 

  5. Lucci, S., Kopec, D., Musa, S.M.: Artificial Intelligence in the 21st Century. Mercury (2022)

    Google Scholar 

  6. Marsland, S.: Machine Learning. CRC Press (2015)

    Google Scholar 

  7. Herrnstein, R.J.: Levels of stimulus control. Cognition 37, 133–166 (1990)

    Article  Google Scholar 

  8. Penn, D.C., Holyoak, K.J., Povinelli, D.J.: Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behav Brain Sci 31, 1–70 (2008)

    Article  Google Scholar 

  9. Kralik, J.D., Hauser, M.D.: A nonhuman primate’s perception of object relations: experiments on cottontop tamarins. Animal Behaviour 63, 419–435 (2002)

    Article  Google Scholar 

  10. Kowaguchi, M., Patel, N.P., Bunnell, M.E., Kralik, J.D.: Competitive control of cognition in rhesus monkeys. Cognition 157, 146–155 (2016)

    Article  Google Scholar 

  11. Tomasello, M., Call, J.: Primate Cognition. Oxford University Press (1997)

    Google Scholar 

  12. Gross, R.: Being Human. Hodder Education (2012)

    Google Scholar 

  13. Pasternak, C.: What Makes Us Human? Oneworld (2007)

    Google Scholar 

  14. Kralik, J.D.: Architectural design of mind & brain from an evolutionary perspective. In: Proc. AAAI 2017 Fall Symposium (2017)

    Google Scholar 

  15. Chalmers, D.J.: The Conscious Mind. Oxford University Press (1996)

    Google Scholar 

  16. Damasio, A.: Feeling & Knowing. Pantheon (2021)

    Google Scholar 

  17. Deary, I.J.: Intelligence. Annu Rev Psychol 63, 453–482 (2012)

    Article  Google Scholar 

  18. Maltby, J., Day, L., Macaskill, A.: Personality, Individual Differences and Intelligence. Pearson (2017)

    Google Scholar 

  19. Herrnstein, R.J., Murray, C.: The Bell Curve. Simon & Schuster (1996)

    Google Scholar 

  20. Holyoak, K.J., Morrison, R.G.: The Oxford Handbook of Thinking and Reasoning. Oxford University Press (2012)

    Google Scholar 

  21. Carroll, J.B.: Human Cognitive Abilities. Cambridge University Press (1993)

    Google Scholar 

  22. Johnson, W., Bouchard, T.J., Jr., Krueger, R.F., McGue, M., Gottesman, I.I.: Just one g: consistent results from three test batteries. Intelligence 32, 95–107 (2004)

    Article  Google Scholar 

  23. Spearman, C.E.: ‘General intelligence’, objectively determined and measured. American Journal of Psychology 15, 201–293 (1904)

    Article  Google Scholar 

  24. Knopik, V.S., Neiderhiser, J.M., DeFries, J.C., Plomin, R.: Behavioral genetics. Worth (2016)

    Google Scholar 

  25. Loehlin, J.C.: Partitioning environmental and genetic contributions to behavioral development. Am Psychol 44, 1285–1292 (1989)

    Article  Google Scholar 

  26. Bouchard, T.J., McGue, M.: Familial studies of intelligence - a review. Science 212, 1055–1059 (1981)

    Article  Google Scholar 

  27. Chipuer, H.M., Rovine, M., Plomin, R.: LISREL modelling: Genetic and environmental influences on IQ revisited. Intelligence 14 (1990)

    Google Scholar 

  28. Johnson, W., et al.: Genetic and environmental influences on the verbal-perceptual-image rotation (VPR) model of the structure of mental abilities in the minnesota study of twins reared apart. Intelligence 35, 542–562 (2007)

    Article  Google Scholar 

  29. Posthuma, D., et al.: The association between brain volume and intelligence is of genetic origin. Nat. Neurosci. 5, 83–84 (2002)

    Article  Google Scholar 

  30. Chiang, M.-C., et al.: Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience 29, 2212–2224 (2009)

    Article  Google Scholar 

  31. Jung, R.E., Haier, R.J.: The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behav Brain Sci 30, 135–+ (2007)

    Google Scholar 

  32. Duncan, J., et al.: A neural basis for general intelligence. Science 289, 457–460 (2000)

    Article  Google Scholar 

  33. Striedter, G.F.: Principles of Brain Evolution. Sinauer Associates (2005)

    Google Scholar 

  34. Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Cognitive neuroscience. Norton (2002)

    Google Scholar 

  35. Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind. AI Mag. 38, 13–26 (2017)

    Google Scholar 

  36. Doumas, L.A.A., Hummel, J.E.: In: Holyoak, K.J., Morrison, R.G. (eds.) The Oxford Handbook of Thinking and Reasoning, pp. 52–66. Oxford University Press (2012)

    Google Scholar 

  37. Adams, S.S., et al.: Mapping the landscape of human-level artificial general intelligence. AI Magazine 33, 25–41 (2012)

    Article  Google Scholar 

  38. Kemp, C., Tenenbaum, J.B.: The discovery of structural form. PNAS 105, 10687–92 (2008)

    Article  Google Scholar 

  39. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Goswami, U.: Cognitive development. Routledge (2008)

    Google Scholar 

  41. Carey, S., Spelke, E.: In: Hirschfeld, G. (ed.) Mapping the Mind, pp. 169–200 (1994)

    Google Scholar 

  42. Gelman, S.A., Frazier, B.N.: In: Holyoak, K.J., Morrison, R.G. (eds.) The Oxford Handbook of Thinking and Reasoning. Oxford University Press (2012)

    Google Scholar 

  43. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav Brain Sci 40 (2017)

    Google Scholar 

  44. Carey, S.: Conceptual Change in Childhood. The MIT Press (1985)

    Google Scholar 

  45. Pearl, J.: Causality. Cambridge University Press (2009)

    Google Scholar 

  46. Kralik, J.D.: Core high-level cognitive abilities derived from hunter-gatherer shelter building. In: Proc. of 16th International Conference on Cognitive Modeling, pp. 49–54 (2018)

    Google Scholar 

  47. Gardner, H.: Frames of Mind. Basic Books (1983)

    Google Scholar 

  48. Visser, B.A., Ashton, M.C., Vernon, P.A.: Beyond g. Intelligence 34, 487–502 (2006)

    Article  Google Scholar 

  49. Goodman, N., Tenenbaum, J.B.: Learning physics from dynamical scenes (2014)

    Google Scholar 

  50. Kralik, J.D., et al.: Metacognition for a common model of cognition. Procedia Computer Science 145, 730–739 (2018)

    Article  Google Scholar 

  51. Friedman, N.P., et al.: Individual differences in executive functions are almost entirely genetic in origin. J. Experim. Psychol. Gen. 137, 201–225 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerald D. Kralik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kralik, J.D. (2023). What Can Nonhuman Animals, Children, and g Tell Us About Human-Level Artificial General Intelligence (AGI)?. In: Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D. (eds) Artificial General Intelligence. AGI 2022. Lecture Notes in Computer Science(), vol 13539. Springer, Cham. https://doi.org/10.1007/978-3-031-19907-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19907-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19906-6

  • Online ISBN: 978-3-031-19907-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics