Skip to main content

Reinforcement Learning with Information-Theoretic Actuation

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2022)

Abstract

Reinforcement Learning formalises an embodied agent’s interaction with the environment through observations, rewards and actions. But where do the actions come from? Actions are often considered to represent something external, such as the movement of a limb, a chess piece, or more generally, the output of an actuator. In this work we explore and formalize a contrasting view, namely that actions are best thought of as the output of a sequence of internal choices with respect to an action model. This view is particularly well-suited for leveraging the recent advances in large sequence models as prior knowledge for multi-task reinforcement learning problems. Our main contribution in this work is to show how to augment the standard MDP formalism with a sequential notion of internal action using information-theoretic techniques, and that this leads to self-consistent definitions of both internal and external action value functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  2. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)

  3. Catt, E., Hutter, M., Veness, J.: Reinforcement learning with information-theoretic actuation. arXiv preprint arXiv:2109.15147 (2021)

  4. Cover, T.M.: Elements of Information Theory. Wiley, New York (1999)

    Google Scholar 

  5. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K.O., Clune, J.: Go-explore: a new approach for hard-exploration problems (2021)

    Google Scholar 

  6. Hutter, M.: On the existence and convergence of computable universal priors. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds.) ALT 2003. LNCS (LNAI), vol. 2842, pp. 298–312. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39624-6_24

    Chapter  Google Scholar 

  7. Janner, M., Li, Q., Levine, S.: Reinforcement learning as one big sequence modeling problem (2021)

    Google Scholar 

  8. Milan, K., et al.: The forget-me-not process. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  9. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  10. Ortega, P., et al.: Meta-learning of sequential strategies (2019)

    Google Scholar 

  11. Rissanen, J., Langdon, G.G.: Arithmetic coding. IBM J. Res. Dev. 23(2), 149–162 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Strehl, A., Li, L., Littman, M.: Reinforcement learning in finite MDPs: PAC analysis. J. Mach. Learn. Res. 10, 2413–2444 (2009). https://doi.org/10.1145/1577069.1755867

    Article  MathSciNet  MATH  Google Scholar 

  13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  14. Szepesvári, C.: Algorithms for reinforcement learning. Synth. Lect. Artif. Intell. Mach. Learn. 4(1), 1–103 (2010)

    MATH  Google Scholar 

  15. Veness, J., et al.: Gated linear networks. arXiv preprint arXiv:1910.01526 (2019)

  16. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot Catt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Catt, E., Hutter, M., Veness, J. (2023). Reinforcement Learning with Information-Theoretic Actuation. In: Goertzel, B., Iklé, M., Potapov, A., Ponomaryov, D. (eds) Artificial General Intelligence. AGI 2022. Lecture Notes in Computer Science(), vol 13539. Springer, Cham. https://doi.org/10.1007/978-3-031-19907-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19907-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19906-6

  • Online ISBN: 978-3-031-19907-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics