Skip to main content

BodySLAM: Joint Camera Localisation, Mapping, and Human Motion Tracking

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Estimating human motion from video is an active research area due to its many potential applications. Most state-of-the-art methods predict human shape and posture estimates for individual images and do not leverage the temporal information available in video. Many “in the wild" sequences of human motion are captured by a moving camera, which adds the complication of conflated camera and human motion to the estimation. We therefore present BodySLAM, a monocular SLAM system that jointly estimates the position, shape, and posture of human bodies, as well as the camera trajectory. We also introduce a novel human motion model to constrain sequential body postures and observe the scale of the scene. Through a series of experiments on video sequences of human motion captured by a moving monocular camera, we demonstrate that BodySLAM improves estimates of all human body parameters and camera poses when compared to estimating these separately.

Research presented in this paper has been supported by Dyson Technology Ltd. and the Technical University of Munich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We encourage the reader to view our supplementary video available at:

    https://youtu.be/0-SL3VeWEvU.

References

  1. Agarwal, S., Mierle, K., et al.: Ceres Solver. http://ceres-solver.org

  2. Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. ACM Trans. Graph. (2005)

    Google Scholar 

  4. Arnab, A., Doersch, C., Zisserman, A.: Exploiting temporal context for 3D human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  5. Barnes, D., Maddern, W., Pascoe, G., Posner, I.: Driven to distraction: self-supervised distractor learning for robust monocular visual odometry in urban environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  6. Bârsan, I.A., Liu, P., Pollefeys, M., Geiger, A.: Robust dense mapping for large-scale dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  7. Bescos, B., Fácil, J.M., Civera, J., Neira, J.: DynaSLAM: tracking, mapping and inpainting in dynamic scenes. Technical report (2018)

    Google Scholar 

  8. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  9. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  10. Catalin Ionescu Fuxin Li, C.S.: Latent structured models for human pose estimation. In: Proceedings of the International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  11. Dabral, R., Mundhada, A., Kusupati, U., Afaque, S., Sharma, A., Jain, A.: Learning 3D human pose from structure and motion. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 679–696. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_41

    Chapter  Google Scholar 

  12. Dai, W., Zhang, Y., Li, P., Fang, Z., Scherer, S.: RGB-D SLAM in dynamic environments using point correlations. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 44, 373–389 (2020)

    Google Scholar 

  13. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  14. Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C.: In the wild human pose estimation using explicit 2D features and intermediate 3D representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  15. Henein, M., Kennedy, G., Mahony, R., Ila, V.: Exploiting rigid body motion for SLAM in dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  16. Henein, M., Zhang, J., Mahony, R., Ila, V.: Dynamic SLAM: the need for speed. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

  17. Henning, D., Guler, A., Leutenegger, S., Zafeiriou, S.: HPE3D: human pose estimation in 3D (2020). https://github.com/dorianhenning/hpe3d

  18. Hossain, M.R.I., Little, J.J.: Exploiting temporal information for 3D human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 69–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_5

    Chapter  Google Scholar 

  19. Huang, Y., et al.: Towards accurate marker-less human shape and pose estimation over time. In: Proceedings of the International Conference on 3D Vision (3DV) (2017)

    Google Scholar 

  20. Jaimez, M., Kerl, C., Gonzalez-Jimenez, J., Cremers, D.: Fast odometry and scene flow from RGB-D cameras based on geometric clustering. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  21. Ji, T., Wang, C., Xie, L.: Towards real-time semantic RGB-D SLAM in dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2021)

    Google Scholar 

  22. Judd, K.M., Gammell, J.D., Newman, P.: Multimotion Visual Odometry (MVO): simultaneous estimation of camera and third-party motions. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  23. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  24. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)

    Google Scholar 

  26. Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  27. Kocabas, M., Huang, C.H.P., Tesch, J., Müller, L., Hilliges, O., Black, M.J.: SPEC: seeing people in the wild with an estimated camera. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  28. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  29. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of the International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  30. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. (IJRR) 34, 314–334 (2015)

    Google Scholar 

  31. Ling, H.Y., Zinno, F., Cheng, G., van de Panne, M.: Character controllers using motion vaes. ACM Trans. Graph. 39, 40 (2020)

    Google Scholar 

  32. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34, 1–16 (2015)

    Google Scholar 

  33. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: Proceedings of the International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  34. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  35. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33, 1255–1262 (2017)

    Google Scholar 

  36. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: sparse trained articulated human body regressor. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 598–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_36

    Chapter  Google Scholar 

  37. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  38. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  39. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3D human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  40. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  41. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  42. Qiu, Y., Wang, C., Wang, W., Henein, M., Scherer, S.: AirDOS: dynamic SLAM benefits from articulated objects. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2022)

    Google Scholar 

  43. Ramakrishna, V., Kanade, T., Sheikh, Y.: Reconstructing 3D human pose from 2D image landmarks. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 573–586. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_41

    Chapter  Google Scholar 

  44. Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: HuMoR: 3D human motion model for robust pose estimation. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  45. Rünz, M., Agapito, L.: Co-fusion: real-time segmentation, tracking and fusion of multiple objects. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  46. Rünz, M., Buffier, M., Agapito, L.: MaskFusion: real-time recognition, tracking and reconstruction of multiple moving objects. In: Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR) (2018)

    Google Scholar 

  47. Scona, R., Jaimez, M., Petillot, Y.R., Fallon, M., Cremers, D.: StaticFusion: background reconstruction for dense RGB-D SLAM in dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  48. Valmadre, J., Lucey, S.: Deterministic 3D human pose estimation using rigid structure. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 467–480. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_34

    Chapter  Google Scholar 

  49. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  50. Xu, B., Li, W., Tzoumanikas, D., Bloesch, M., Davison, A., Leutenegger, S.: MID-fusion: octree-based object-level multi-instance dynamic SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  51. Zhao, R., Wang, Y., Martinez, A.: A simple, fast and highly-accurate algorithm to recover 3D shape from 2D landmarks on a single image. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 40, 3059–3066 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian F. Henning .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henning, D.F., Laidlow, T., Leutenegger, S. (2022). BodySLAM: Joint Camera Localisation, Mapping, and Human Motion Tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13699. Springer, Cham. https://doi.org/10.1007/978-3-031-19842-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19842-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19841-0

  • Online ISBN: 978-3-031-19842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics