Skip to main content

SiRi: A Simple Selective Retraining Mechanism for Transformer-Based Visual Grounding

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

In this paper, we investigate how to achieve better visual grounding with modern vision-language transformers, and propose a simple yet powerful Selective Retraining (SiRi) mechanism for this challenging task. Particularly, SiRi conveys a significant principle to the research of visual grounding, i.e., a better initialized vision-language encoder would help the model converge to a better local minimum, advancing the performance accordingly. In specific, we continually update the parameters of the encoder as the training goes on, while periodically re-initialize rest of the parameters to compel the model to be better optimized based on an enhanced encoder. SiRi can significantly outperform previous approaches on three popular benchmarks. Specifically, our method achieves 83.04% Top1 accuracy on RefCOCO+ testA, outperforming the state-of-the-art approaches (training from scratch) by more than 10.21%. Additionally, we reveal that SiRi performs surprisingly superior even with limited training data. We also extend it to transformer-based visual grounding models and other vision-language tasks to verify the validity. Code is available at https://github.com/qumengxue/siri-vg.git.

M. Qu—Work done during an internship at JD Explore Academy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We train more epochs until converging in small-scale experiments.

References

  1. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR (2010)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, X., Ma, L., Chen, J., Jie, Z., Liu, W., Luo, J.: Real-time referring expression comprehension by single-stage grounding network. arXiv preprint arXiv:1812.03426 (2018)

  4. Chen, Y.-C., et al.: UNITER: learning universal image-text representations (2019)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  6. Deng, J., Yang, Z., Chen, T., Zhou, W., Li, H.: TransVG: end-to-end visual grounding with transformers. In: ICCV (2021)

    Google Scholar 

  7. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Gan, Z., Chen, Y.-C., Li, L., Zhu, C., Cheng, Y., Liu, J.: Large-scale adversarial training for vision-and-language representation learning. In: NeruIPS (2020)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS (2010)

    Google Scholar 

  11. Han, S., et al.: DSD: dense-sparse-sense training for deep neural networks. In: ICLR (2017)

    Google Scholar 

  12. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12, 993–1001 (1990)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37, 583–596 (2014)

    Google Scholar 

  15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  16. Hong, R., Liu, D., Mo, X., He, X., Zhang, H.: Learning to compose and reason with language tree structures for visual grounding. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  17. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: CVPR (2017)

    Google Scholar 

  18. Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.: Snapshot ensembles: train 1, get m for free. In: ICLR (2017)

    Google Scholar 

  19. Huang, J., Qu, L., Jia, R., Zhao, B.: O2U-Net: a simple noisy label detection approach for deep neural networks. In: ICCV (2019)

    Google Scholar 

  20. Huang, X.S., et al.: Improving transformer optimization through better initialization. In: ICML (2020)

    Google Scholar 

  21. Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: MDETR-modulated detection for end-to-end multi-modal understanding. In: ICCV (2021)

    Google Scholar 

  22. Kim, W., Son, B., Kim, I.: ViLT: vision-and-language transformer without convolution or region supervision. In: ICML (2021)

    Google Scholar 

  23. Krogh, A., Vedelsby, J., et al.: Neural network ensembles, cross validation, and active learning. In: NeruIPS (1995)

    Google Scholar 

  24. Liang, C., Wu, Y., Luo, Y., Yang, Y.: ClawCraneNet: leveraging object-level relation for text-based video segmentation. arXiv preprint arXiv:2103.10702 (2021)

  25. Liang, C., et al.: Rethinking cross-modal interaction from a top-down perspective for referring video object segmentation. arXiv preprint arXiv:2106.01061 (2021)

  26. Liao, Y., et al.: A real-time cross-modality correlation filtering method for referring expression comprehension. In: CVPR (2020)

    Google Scholar 

  27. Liu, D., Zhang, H., Wu, F., Zha, Z.-J.: Learning to assemble neural module tree networks for visual grounding. In: ICCV (2019)

    Google Scholar 

  28. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  29. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)

    Google Scholar 

  30. Jiasen, L., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: NeruIPS (2019)

    Google Scholar 

  31. Luo, G., et al.: Multi-task collaborative network for joint referring expression comprehension and segmentation. In: CVPR (2020)

    Google Scholar 

  32. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR (2016)

    Google Scholar 

  33. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  34. Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural language queries. In: ICCV (2019)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  36. Smith, L.N.: Cyclical learning rates for training neural networks. In: WACV, pp. 464–472. IEEE Computer Society (2017)

    Google Scholar 

  37. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    Google Scholar 

  38. Weijie, S., et al.: VL-BERT: pre-training of generic visual-linguistic representations. In: ICLR (2020)

    Google Scholar 

  39. Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. In: EMNLP (2019)

    Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: NeuruIPS (2017)

    Google Scholar 

  41. Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch neural networks for image-text matching tasks. IEEE Trans. Pattern Anal. Mach. Intell. 41, 394–407 (2018)

    Google Scholar 

  42. Wang, P., Qi, W., Cao, J., Shen, C., Gao, L., van den Hengel, A.: Neighbourhood watch: referring expression comprehension via language-guided graph attention networks. In: CVPR (2019)

    Google Scholar 

  43. Wu, Y., Jiang, L., Yang, Y.: Switchable novel object captioner. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2022)

    Google Scholar 

  44. Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: ICCV (2019)

    Google Scholar 

  45. Yang, S., Li, G., Yu, Y.: Graph-structured referring expression reasoning in the wild. In: CVPR (2020)

    Google Scholar 

  46. Yang, Z., Chen, T., Wang, L., Luo, J.: Improving one-stage visual grounding by recursive sub-query construction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_23

    Chapter  Google Scholar 

  47. Yang, Z., et al.: LAVT: language-aware vision transformer for referring image segmentation. In: CVPR (2022)

    Google Scholar 

  48. Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: ICCV (2019)

    Google Scholar 

  49. Yu, F., et al.: ERNRE-ViL knowledge enhanced vision-language representations through scene graph (2020)

    Google Scholar 

  50. Yu, L., et al.: MAttNet: modular attention network for referring expression comprehension. In: CVPR (2018)

    Google Scholar 

  51. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5

    Chapter  Google Scholar 

  52. Zhang, H., Niu, Y., Chang, S.-F.: Grounding referring expressions in images by variational context. In: CVPR (2018)

    Google Scholar 

  53. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129, 3069–3087 (2021)

    Google Scholar 

  54. Zheng, K., Liu, W., Liu, J., Zha, Z.-J., Mei, T.: Hierarchical Gumbel attention network for text-based person search. In: ACM Multimedia, pp. 3441–3449. ACM (2020)

    Google Scholar 

  55. Zhuang, B., Wu, Q., Shen, C., Reid, I., Van Den Hengel, A.: Parallel attention: a unified framework for visual object discovery through dialogs and queries. In CVPR (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R &D Program of China (No.2021ZD0112100), the National NSF of China (No. U1936212, No. 62120106009), the Fundamental Research Funds for the Central Universities (No. K22RC00010). We thank Princeton Visual AI Lab members (Dora Zhao, Jihoon Chung, and others) for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchao Wei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 793 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, M. et al. (2022). SiRi: A Simple Selective Retraining Mechanism for Transformer-Based Visual Grounding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19833-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19832-8

  • Online ISBN: 978-3-031-19833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics