Skip to main content

NDF: Neural Deformable Fields for Dynamic Human Modelling

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13692))

Included in the following conference series:

Abstract

We propose Neural Deformable Fields (NDF), a new representation for dynamic human digitization from a multi-view video. Recent works proposed to represent a dynamic human body with shared canonical neural radiance fields which links to the observation space with deformation fields estimations. However, the learned canonical representation is static and the current design of the deformation fields is not able to represent large movements or detailed geometry changes. In this paper, we propose to learn a neural deformable field wrapped around a fitted parametric body model to represent the dynamic human. The NDF is spatially aligned by the underlying reference surface. A neural network is then learned to map pose to the dynamics of NDF. The proposed NDF representation can synthesize the digitized performer with novel views and novel poses with a detailed and reasonable dynamic appearance. Experiments show that our method significantly outperforms recent human synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, K.A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural point-based graphics. In: European Conferenc on Computer Vision, pp. 696–712 (2020)

    Google Scholar 

  2. Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph. 34(4), 1–13 (2015)

    Article  Google Scholar 

  3. Dai, P., Zhang, Y., Li, Z., Liu, S., Zeng, B.: Neural point cloud rendering via multi-plane projection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7830–7839 (2020)

    Google Scholar 

  4. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: FastNeRF: high-fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14346–14355 (2021)

    Google Scholar 

  5. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54 (1996)

    Google Scholar 

  6. Guo, K., et al.: The relightables: volumetric performance capture of humans with realistic relighting. ACM Trans. Graph. 38(6), 1–19 (2019)

    Google Scholar 

  7. Habermann, M., Liu, L., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: Real-time deep dynamic characters. ACM Trans. Graph. 40(4), 1–16 (2021)

    Article  Google Scholar 

  8. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. 37(6), 1–15 (2018)

    Article  Google Scholar 

  9. Joo, H., Simon, T., Sheikh, Y.: Total capture: A 3d deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8320–8329 (2018)

    Google Scholar 

  10. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18(3), 165–174 (1984)

    Article  Google Scholar 

  11. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–172 (2000)

    Google Scholar 

  12. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)

    Google Scholar 

  13. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural Inf. Process. Syst. 33, 15651–15663 (2020)

    Google Scholar 

  14. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. 40(6), 1–6 (2021)

    Google Scholar 

  15. Liu, L., e al.: Neural human video rendering by learning dynamic textures and rendering-to-video translation. IEEE Trans. Vis. Comput. Graph. 1 (2020)

    Google Scholar 

  16. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. 38(4), 65:1–65:14 (2019)

    Google Scholar 

  17. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 1–16 (2015)

    Article  Google Scholar 

  18. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  19. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. 38(4), 1–14 (2019)

    Article  Google Scholar 

  20. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NERF: representing scenes as neural radiance fields for view synthesis. In: European Conference on Computer Vision, pp. 405–421 (2020)

    Google Scholar 

  21. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5762–5772 (2021)

    Google Scholar 

  22. Park, K., et al.: Nerfies: deformable neural radiance fields. In: IEEE International Conference on Computer Vision, pp. 5865–5874 (2021)

    Google Scholar 

  23. Park, K., et al.: HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans. Graph. 40(6) (2021)

    Google Scholar 

  24. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14314–14323 (2021)

    Google Scholar 

  25. Peng, S., et al.: Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9054–9063 (2021)

    Google Scholar 

  26. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  27. Shao, R., et al.: DoubleField: bridging the neural surface and radiance fields for high-fidelity human reconstruction and rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15872–15882 (2022)

    Google Scholar 

  28. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3d feature embeddings. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2437–2446 (2019)

    Google Scholar 

  29. Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: continuous 3d-structure-aware neural scene representations. Adv. Neural Inf. Process. Syst. 32, 1121–1132 (2019)

    Google Scholar 

  30. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  31. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. ACM Trans. Graph. 37(4), 1–12 (2018)

    Article  Google Scholar 

  32. zju3dv: Easymocap. http://github.com/zju3dv/EasyMocap (2021)

Download references

Acknowledgments

The research was supported by the Theme-based Research Scheme, Research Grants Council of Hong Kong (T45-205/21-N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1767 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R., Chen, J. (2022). NDF: Neural Deformable Fields for Dynamic Human Modelling. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19824-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19823-6

  • Online ISBN: 978-3-031-19824-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics