Skip to main content

MVSTER: Epipolar Transformer for Efficient Multi-view Stereo

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13691))

Included in the following conference series:

Abstract

Learning-based Multi-View Stereo (MVS) methods warp source images into the reference camera frustum to form 3D volumes, which are fused as a cost volume to be regularized by subsequent networks. The fusing step plays a vital role in bridging 2D semantics and 3D spatial associations. However, previous methods utilize extra networks to learn 2D information as fusing cues, underusing 3D spatial correlations and bringing additional computation costs. Therefore, we present MVSTER, which leverages the proposed epipolar Transformer to learn both 2D semantics and 3D spatial associations efficiently. Specifically, the epipolar Transformer utilizes a detachable monocular depth estimator to enhance 2D semantics and uses cross-attention to construct data-dependent 3D associations along epipolar line. Additionally, MVSTER is built in a cascade structure, where entropy-regularized optimal transport is leveraged to propagate finer depth estimations in each stage. Extensive experiments show MVSTER achieves state-of-the-art reconstruction performance with significantly higher efficiency: Compared with MVSNet and CasMVSNet, our MVSTER achieves 34% and 14% relative improvements on the DTU benchmark, with 80% and 51% relative reductions in running time. MVSTER also ranks first on Tanks &Temples-Advanced among all published works. Code is available at https://github.com/JeffWang987/MVSTER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Three hypothesized depth number: (\(i\)) D : 192 used by one-stage methods [57, 65, 66], (\(ii\)) D : 48, 32, 8 used by three-stage methods [14, 23], and (\(iii\)) D : 8, 8, 4, 4 used by MVSTER. All of these conditions follow implementation details described in Sect. 4.2.

References

  1. Aanæs, H., Jensen, R.R., Vogiatzis, G., Tola, E., Dahl, A.B.: Large-scale data for multiple-view stereopsis. Int. J. Comput. Vis. 120, 153–168 (2016)

    Google Scholar 

  2. Abnar, S., Zuidema, W.H.: Quantifying attention flow in transformers. In: Association for Computational Linguistics (2020)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  4. Bozic, A., Palafox, P., Thies, J., Dai, A., Nießner, M.: TransFormerfusion: monocular RGB scene reconstruction using transformers. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  5. Campbell, N.D.F., Vogiatzis, G., Hernández, C., Cipolla, R.: Using multiple hypotheses to improve depth-maps for multi-view stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 766–779. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_58

    Chapter  Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Chen, M., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning (2020)

    Google Scholar 

  8. Chen, R., Han, S., Xu, J., Su, H.: Point-based multi-view stereo network. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  9. Cheng, S., et al.: Deep stereo using adaptive thin volume representation with uncertainty awareness. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  10. Collins, R.T.: A space-sweep approach to true multi-image matching. In: IEEE Conference on Computer Vision and Pattern Recognition (1996)

    Google Scholar 

  11. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  12. Dai, J., et al.: Deformable convolutional networks. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  13. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2019)

    Google Scholar 

  14. Ding, Y., et al.: TransMVSNet: global context-aware multi-view stereo network with transformers. arXiv preprint arXiv:2111.14600 (2021)

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  16. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  17. Duggal, S., Wang, S., Ma, W., Hu, R., Urtasun, R.: DeepPruner: learning efficient stereo matching via differentiable PatchMatch. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  18. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. (2010)

    Google Scholar 

  19. Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  20. Giang, K.T., Song, S., Jo, S.: Curvature-guided dynamic scale networks for multi-view stereo. arXiv preprint arXiv:2112.05999 (2021)

  21. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  22. Godard, C., Aodha, O.M., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  23. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  24. He, C., Zeng, H., Huang, J., Hua, X., Zhang, L.: Structure aware single-stage 3d object detection from point cloud. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  25. He, Y., Yan, R., Fragkiadaki, K., Yu, S.: Epipolar transformer for multi-view human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  26. Ke, Q., Bennamoun, M., An, S., Sohel, F.A., Boussaïd, F.: A new representation of skeleton sequences for 3d action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  28. Knapitsch, A., Park, J., Zhou, Q., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36, 1–13 (2017)

    Google Scholar 

  29. Lee, J.Y., DeGol, J., Zou, C., Hoiem, D.: PatchMatch-RL: Deep MVS with pixelwise depth, normal, and visibility. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  30. Li, Z., et al.: Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  31. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  32. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  33. Luo, S., Hu, W.: Diffusion probabilistic models for 3D point cloud generation. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  34. Ma, X., Gong, Y., Wang, Q., Huang, J., Chen, L., Yu, F.: EPP-MVSNet: epipolar-assembling based depth prediction for multi-view stereo. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  35. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  36. Mordan, T., Thome, N., Hénaff, G., Cord, M.: Revisiting multi-task learning with ROCK: a deep residual auxiliary block for visual detection. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  37. Peng, R., Wang, R., Wang, Z., Lai, Y., Wang, R.: Rethinking depth estimation for multi-view stereo: a unified representation and focal loss. arXiv preprint arXiv:2201.01501 (2022)

  38. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. (2019)

    Google Scholar 

  39. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  40. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  41. Qin, J., Wu, J., Xiao, X., Li, L., Wang, X.: Activation modulation and recalibration scheme for weakly supervised semantic segmentation. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  42. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training. OpenAI Preprint (2018)

    Google Scholar 

  43. Schönberger, J.L., Frahm, J.: Structure-from-motion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  44. Schöps, T., et al.: A multi-view stereo benchmark with high-resolution images and multi-camera videos. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  45. Shen, Z., Dai, Y., Rao, Z.: CFNet: cascade and fused cost volume for robust stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  46. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  47. Sinha, A., Murez, Z., Bartolozzi, J., Badrinarayanan, V., Rabinovich, A.: DELTAS: depth estimation by learning triangulation and densification of sparse points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 104–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_7

    Chapter  Google Scholar 

  48. Tankovich, V., et al.: HitNet: hierarchical iterative tile refinement network for real-time stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 14362–14372 (2021)

    Google Scholar 

  49. Tenney, I., Das, D., Pavlick, E.: BERT rediscovers the classical NLP pipeline. In: Association for Computational Linguistics (2019)

    Google Scholar 

  50. Tola, E., Strecha, C., Fua, P.: Efficient large-scale multi-view stereo for ultra high-resolution image sets. Mach. Vis. Appl. 23, 903–920 (2012)

    Google Scholar 

  51. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  52. Wang, F., Galliani, S., Vogel, C., Pollefeys, M.: IterMVS: iterative probability estimation for efficient multi-view stereo. arXiv preprint arXiv:2112.05126 (2021)

  53. Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: PatchmatchNet: learned multi-view PatchMatch stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  54. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  55. Watson, J., Aodha, O.M., Prisacariu, V., Brostow, G.J., Firman, M.: The temporal opportunist: self-supervised multi-frame monocular depth. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  56. Wei, Y., et al.: SurroundDepth: entangling surrounding views for self-supervised multi-camera depth estimation. arXiv preprint arXiv:2204.03636 (2022)

  57. Wei, Z., Zhu, Q., Min, C., Chen, Y., Wang, G.: AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  58. Xu, Q., Tao, W.: Multi-scale geometric consistency guided multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  59. Xu, Q., Tao, W.: Learning inverse depth regression for multi-view stereo with correlation cost volume. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  60. Xu, Q., Tao, W.: PVSNet: pixelwise visibility-aware multi-view stereo network. arXiv preprint arXiv:2007.07714 (2020)

  61. Yan, J., et al.: Dense hybrid recurrent multi-view stereo net with dynamic consistency checking. In: European Conference on Computer Vision (2020)

    Google Scholar 

  62. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  63. Yang, J., Mao, W., Alvarez, J.M., Liu, M.: Cost volume pyramid based depth inference for multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  64. Yang, Z., Ren, Z., Shan, Q., Huang, Q.: MVS2D: efficient multi-view stereo via attention-driven 2D convolutions. arXiv preprint arXiv:2104.13325 (2021)

  65. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47

    Chapter  Google Scholar 

  66. Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  67. Yao, Y., et al.: BlendedMVS: a large-scale dataset for generalized multi-view stereo networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  68. Yi, H., et al.: Pyramid multi-view stereo net with self-adaptive view aggregation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 766–782. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_44

    Chapter  Google Scholar 

  69. Yu, Z., Gao, S.: Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  70. Zhang, J., Yao, Y., Li, S., Luo, Z., Fang, T.: Visibility-aware multi-view stereo network. In: British Machine Vision Conference (2020)

    Google Scholar 

  71. Zhang, X., Hu, Y., Wang, H., Cao, X., Zhang, B.: Long-range attention network for multi-view stereo. In: IEEE Winter Conference on Applications of Computer Vision (2021)

    Google Scholar 

  72. Zhang, Y., et al.: BEVerse: unified perception and prediction in birds-eye-view for vision-centric autonomous driving. arXiv preprint arXiv:2205.09743 (2022)

  73. Zhao, M., Zhang, J., Zhang, C., Zhang, W.: Leveraging heterogeneous auxiliary tasks to assist crowd counting. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  74. Zhao, Z., Wu, Z., Zhuang, Y., Li, B., Jia, J.: Tracking objects as pixel-wise distributions. arXiv preprint arXiv:2207.05518 (2022)

  75. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  76. Zhu, J., Peng, B., Li, W., Shen, H., Zhang, Z., Lei, J.: Multi-view stereo with transformer. arXiv preprint arXiv:2112.00336 (2021)

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 62073317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3113 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2022). MVSTER: Epipolar Transformer for Efficient Multi-view Stereo. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics