Skip to main content

Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Most few-shot image classification methods are trained based on tasks. Usually, tasks are built on base classes with a large number of labeled images, which consumes large effort. Unsupervised few-shot image classification methods do not need labeled images, because they require tasks to be built on unlabeled images. In order to efficiently build tasks with unlabeled images, we propose a novel single-stage clustering method: Learning Features into Clustering Space (LF2CS), which first set a separable clustering space by fixing the clustering centers and then use a learnable model to learn features into the clustering space. Based on our LF2CS, we put forward an image sampling and c-way k-shot task building method. With this, we propose a novel unsupervised few-shot image classification method, which jointly learns the learnable model, clustering and few-shot image classification. Experiments and visualization show that our LF2CS has a strong ability to generalize to the novel categories. From the perspective of image sampling, we implement four baselines according to how to build tasks. We conduct experiments on the Omniglot, miniImageNet, tieredImageNet and CIFARFS datasets based on the Conv-4 and ResNet-12 backbones. Experimental results show that ours outperform the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramson, N., Braverman, D.J., Sebestyen, G.S.: Pattern recognition and machine learning. JASA 103(482), 886–887 (2006)

    Google Scholar 

  2. Antoniou, A., Storkey, A.J.: Assume, augment and learn: Unsupervised few-shot meta-learning via random labels and data augmentation. CoRR abs/1902.09884 (2019)

    Google Scholar 

  3. Bertinetto, L., Henriques, J.F., Torr, P.H.S., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. In: ICLR (2019)

    Google Scholar 

  4. Bertinetto, L., Henriques, J.F., Valmadre, J., Torr, P.H.S., Vedaldi, A.: Learning feed-forward one-shot learners. In: NIPS, pp. 523–531 (2016)

    Google Scholar 

  5. Bertugli, A., Vincenzi, S., Calderara, S., Passerini, A.: Few-shot unsupervised continual learning through meta-examples. CoRR abs/2009.08107 (2020)

    Google Scholar 

  6. Bharti, A., Balasubramanian, V.N., Jawahar, C.V.: Few shot learning with no labels. CoRR abs/2012.13751 (2020)

    Google Scholar 

  7. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV. vol. 11218, pp. 139–156 (2018)

    Google Scholar 

  8. Chen, M., et al.: Diversity transfer network for few-shot learning. In: AAAI, pp. 10559–10566 (2020)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML, vol. 119, pp. 1597–1607 (2020)

    Google Scholar 

  10. Cui, Y., Liu, F., Liu, X., Li, L., Qian, X.: TCSPANET: two-staged contrastive learning and sub-patch attention based network for polsar image classification. Remote Sens. 14(10), 2451 (2022)

    Article  Google Scholar 

  11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, vol. 70, pp. 1126–1135 (2017)

    Google Scholar 

  12. Frikha, A., Krompaß, D., Köpken, H., Tresp, V.: Few-shot one-class classification via meta-learning. In: AAAI, pp. 7448–7456 (2021)

    Google Scholar 

  13. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  14. Grill, J., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  15. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9726–9735 (2020)

    Google Scholar 

  16. Hsu, K., Levine, S., Finn, C.: Unsupervised learning via meta-learning. In: ICLR (2019)

    Google Scholar 

  17. Ji, Z., Zou, X., Huang, T., Wu, S.: Unsupervised few-shot feature learning via self-supervised training. Front. Comput. Neurosci. 14, 83 (2020)

    Article  Google Scholar 

  18. Jiao, L., Ronghua, S., Fang, L., Weitong, Z.: Brain and Nature-Inspired Learning, Computation and Recognition. Elsevier, Amsterdam (2020)

    Google Scholar 

  19. Karypis, G., Han, E., Kumar, V.: Chameleon: Hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)

    Article  Google Scholar 

  20. Khodadadeh, S., Bölöni, L., Shah, M.: Unsupervised meta-learning for few-shot image classification. In: NeurIPS, pp. 10132–10142 (2019)

    Google Scholar 

  21. Khodadadeh, S., Zehtabian, S., Vahidian, S., Wang, W., Lin, B., Bölöni, L.: Unsupervised meta-learning through latent-space interpolation in generative models. CoRR abs/2006.10236 (2020)

    Google Scholar 

  22. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images, pp. 32–33 (2009)

    Google Scholar 

  23. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  24. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR, pp. 10657–10665 (2019)

    Google Scholar 

  25. Li, J., Liu, G.: Few-shot image classification via contrastive self-supervised learning. arXiv abs/2008.09942 (2020)

    Google Scholar 

  26. Li, J., Wang, Z., Hu, X.: Learning intact features by erasing-inpainting for few-shot classification. In: AAAI, pp. 8401–8409 (2021)

    Google Scholar 

  27. Li, S., Liu, F., Jiao, L., Chen, P., Li, L.: Self-supervised self-organizing clustering network: a novel unsupervised representation learning method. IEEE Trans. Neural Netw. Learn. Syst. pp. 1–15 (2022)

    Google Scholar 

  28. Li, W., Xu, J., Huo, J., Wang, L., Gao, Y., Luo, J.: Distribution consistency based covariance metric networks for few-shot learning. In: AAAI, pp. 8642–8649 (2019)

    Google Scholar 

  29. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: learning to learn quickly for few shot learning. CoRR abs/1707.09835 (2017)

    Google Scholar 

  30. Liu, C., Fu, Y., Xu, C., Yang, S., Li, J., Wang, C., Zhang, L.: Learning a few-shot embedding model with contrastive learning. In: AAAI, pp. 8635–8643 (2021)

    Google Scholar 

  31. Liu, F., Qian, X., Jiao, L., Zhang, X., Li, L., Cui, Y.: Contrastive learning-based dual dynamic GCN for SAR image scene classification. IEEE Trans. Neural Netw. Learn. Syst. pp. 1–15 (2022)

    Google Scholar 

  32. Lu, J., Gong, P., Ye, J., Zhang, C.: Learning from very few samples: a survey. CoRR abs/2009.02653 (2020)

    Google Scholar 

  33. Medina, C., Devos, A., Grossglauser, M.: Self-supervised prototypical transfer learning for few-shot classification. CoRR abs/2006.11325 (2020)

    Google Scholar 

  34. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  35. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)

    Google Scholar 

  36. Qin, T., Li, W., Shi, Y., Gao, Y.: Unsupervised few-shot learning via distribution shift-based augmentation. CoRR abs/2004.05805 (2020)

    Google Scholar 

  37. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  38. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)

    Google Scholar 

  39. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  40. Shen, Z., Liu, Z., Qin, J., Savvides, M., Cheng, K.: Partial is better than all: revisiting fine-tuning strategy for few-shot learning. In: AAAI, pp. 9594–9602 (2021)

    Google Scholar 

  41. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: NIPS, pp. 4077–4087 (2017)

    Google Scholar 

  42. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: CVPR, pp. 1199–1208 (2018)

    Google Scholar 

  43. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS, pp. 3630–3638 (2016)

    Google Scholar 

  44. Wang, Y.-X., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 616–634. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_37

    Chapter  Google Scholar 

  45. Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML, vol. 48, pp. 478–487 (2016)

    Google Scholar 

  46. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  47. Zhang, W., Jiao, L., Liu, F., Yang, S., Song, W., Liu, J.: Sparse feature clustering network for unsupervised SAR image change detection. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Google Scholar 

  48. Zhang, X., Jiao, L., Liu, F., Bo, L., Gong, M.: Spectral clustering ensemble applied to SAR image segmentation. IEEE Trans. Geosci. Remote Sens. 46(7), 2126–2136 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No.62076192), Key Research and Development Program in Shaanxi Province of China (No.2019ZDLGY03-06), the State Key Program of National Natural Science of China (No.61836009), in part by the Program for Cheung Kong Scholars and Innovative Research Team in University (No. IRT_15R53), in part by The Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (No. B07048), in part by the Key Scientific Technological Innovation Research Project by Ministry of Education, the National Key Research and Development Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Liu, F., Hao, Z., Zhao, K., Jiao, L. (2022). Unsupervised Few-Shot Image Classification by Learning Features into Clustering Space. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics