Skip to main content

Stochastic Consensus: Enhancing Semi-Supervised Learning with Consistency of Stochastic Classifiers

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13691))

Included in the following conference series:

Abstract

Semi-supervised learning (SSL) has achieved new progress recently with the emerging framework of self-training deep networks, where the criteria for selection of unlabeled samples with pseudo labels play a key role in the empirical success. In this work, we propose such a new criterion based on consistency among multiple, stochastic classifiers, termed Stochastic Consensus (STOCO). Specifically, we model parameters of the classifiers as a Gaussian distribution whose mean and standard deviation are jointly optimized during training. Due to the scarcity of labels in SSL, modeling classifiers as a distribution itself provides additional regularization that mitigates overfitting to the labeled samples. We technically generate pseudo labels using a simple but flexible framework of deep discriminative clustering, which benefits from the overall structure of data distribution. We also provide theoretical analysis of our criterion by connecting with the theory of learning from noisy data. Our proposed criterion can be readily applied to self-training based SSL frameworks. By choosing the representative FixMatch as the baseline, our method with multiple stochastic classifiers achieves the state of the art on popular SSL benchmarks, especially in label-scarce cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2, 343–370 (1988)

    Article  Google Scholar 

  2. Assran, M., et al.: Semi-supervised learning of visual features by non-parametrically predicting view assignments with support samples. In: ICCV, pp. 8443–8452 (2021)

    Google Scholar 

  3. Balcan, M.F., Blum, A., Yang, K.: Co-training and expansion: towards bridging theory and practice. In: NeurIPS, pp. 89–96 (2004)

    Google Scholar 

  4. Berthelot, D., et al.: Remixmatch: semi-supervised learning with distribution matching and augmentation anchoring. In: ICLR (2020)

    Google Scholar 

  5. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  6. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT, pp. 92–100 (1998)

    Google Scholar 

  7. d’Alché Buc, F., Grandvalet, Y., Ambroise, C.: Semi-supervised marginboost. In: NeurIPS, pp. 553–560 (2001)

    Google Scholar 

  8. Chen, M., Weinberger, K.Q., Blitzer, J.: Co-training for domain adaptation. In: NeurIPS, vol. 24 (2011)

    Google Scholar 

  9. Chen, Z., Zhuang, J., Liang, X., Lin, L.: Blending-target domain adaptation by adversarial meta-adaptation networks. In: CVPR, pp. 2243–2252 (2019)

    Google Scholar 

  10. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  11. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: Randaugment: practical automated data augmentation with a reduced search space. In: NeurIPS, vol. 33, pp. 18613–18624 (2020)

    Google Scholar 

  12. Dietterich, T.G.: Ensemble methods in machine learning. In: MCS, pp. 1–15 (2000)

    Google Scholar 

  13. Dizaji, K.G., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: ICCV, pp. 5747–5756 (2017)

    Google Scholar 

  14. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE TPAMI 28, 594–611 (2006)

    Article  Google Scholar 

  16. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rkpoTaxA-

  17. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of International Conference Machine Learning. Proceedings of Machine Learning Research, 20–22 June 2016, vol. 48, pp. 1050–1059. PMLR, New York (2016). https://proceedings.mlr.press/v48/gal16.html

  18. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS, pp. 529–536 (2004)

    Google Scholar 

  19. Guo, L.Z., Zhang, Z.Y., Jiang, Y., Li, Y.F., Zhou, Z.H.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: III, H.D., Singh, A. (eds.) Proceedings of International Conference on Machine Learning. Proceedings of Machine Learning Research, 13–18 July 2020, vol. 119, pp. 3897–3906. PMLR (2020)

    Google Scholar 

  20. Jabi, M., Pedersoli, M., Mitiche, A., Ayed, I.B.: Deep clustering: on the link between discriminative models and k-means. IEEE TPAMI 43, 1887–1896 (2021)

    Article  Google Scholar 

  21. Karim, M.R., et al.: Deep learning-based clustering approaches for bioinformatics. Brief. Bioinf. 22, 393–415 (2020)

    Article  Google Scholar 

  22. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  23. Krizhevsky, A.: Learning multiple layers of features from tiny images. In: Technical report (2009)

    Google Scholar 

  24. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2016)

    Google Scholar 

  25. Lee, D.H.: Pseudo-label : The simple and efficient semi-supervised learning method for deep neural networks. In: Proceedings of International Conference on Machine Learning Workshop (2013)

    Google Scholar 

  26. Li, J., Xiong, C., Hoi, S.C.: Comatch: semi-supervised learning with contrastive graph regularization. In: ICCV, pp. 9475–9484 (2021)

    Google Scholar 

  27. Li, W., Foo, C., Bilen, H.: Learning to impute: a general framework for semi-supervised learning. CoRR abs/1912.10364 (2019). http://arxiv.org/abs/1912.10364

  28. Liang, J., Yang, J., Lee, H.-Y., Wang, K., Yang, M.-H.: Sub-GAN: an unsupervised generative model via subspaces. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 726–743. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_43

    Chapter  Google Scholar 

  29. Lu, Z., Yang, Y., Zhu, X., Liu, C., Song, Y.Z., Xiang, T.: Stochastic classifiers for unsupervised domain adaptation. In: CVPR, pp. 9108–9117 (2020)

    Google Scholar 

  30. Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. In: CVPR, pp. 8896–8905 (2018)

    Google Scholar 

  31. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  32. McLachlan, G.J.: Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis. J. Am. Stat. Assoc. 70, 365–369 (1975)

    Article  MathSciNet  Google Scholar 

  33. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE TPAMI 41, 1979–1993 (2019)

    Article  Google Scholar 

  34. Mousavi, S.M., Zhu, W., Ellsworth, W., Beroza, G.: Unsupervised clustering of seismic signals using deep convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. 16, 1693–1697 (2019)

    Article  Google Scholar 

  35. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: Workshop of Proceedings of Neural Information Processing System (2011)

    Google Scholar 

  36. Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: CVPR, pp. 11557–11568 (2021)

    Google Scholar 

  37. Quinlan, J.R.: Miniboosting decision trees (1999)

    Google Scholar 

  38. Rasmus, A., Valpola, H., Honkala, M., Berglund, M., Raiko, T.: Semi-supervised learning with ladder networks. In: NeurIPS, pp. 3546–3554 (2015)

    Google Scholar 

  39. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning. In: ICLR (2021). https://openreview.net/forum?id=-ODN6SbiUU

  40. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models. In: Seventh IEEE Workshops on Applications of Computer Vision, vol. 1, pp. 29–36 (2005)

    Google Scholar 

  41. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: Proceedings of International Conference Machine Learning, pp. 2988–2997 (2017)

    Google Scholar 

  42. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: NeurIPS, vol. 29 (2016)

    Google Scholar 

  43. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 11, 363–371 (1965)

    Article  MathSciNet  Google Scholar 

  44. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS, vol. 33, pp. 596–608 (2020)

    Google Scholar 

  45. Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: CVPR, pp. 8725–8735 (2020)

    Google Scholar 

  46. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  47. Wang, Y., Guo, J., Song, S., Huang, G.: Meta-semi: a meta-learning approach for semi-supervised learning. CoRR abs/2007.02394 (2020). https://arxiv.org/abs/2007.02394

  48. Wei, C., Shen, K., Chen, Y., Ma, T.: Theoretical analysis of self-training with deep networks on unlabeled data. In: ICLR (2021)

    Google Scholar 

  49. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of International Conference on Machine Learning, pp. 478–487 (2016)

    Google Scholar 

  50. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: NeurIPS, vol. 33, pp. 6256–6268 (2020)

    Google Scholar 

  51. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: CVPR, pp. 10687–10698 (2020)

    Google Scholar 

  52. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  53. Zhang, B., et al.: Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) NeurIPS (2021). https://openreview.net/forum?id=3qMwV98zLIk

  54. Zhang, L., Qi, G.J.: Wcp: worst-case perturbations for semi-supervised deep learning. In: CVPR, pp. 3911–3920 (2020)

    Google Scholar 

  55. Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17, 1529–1541 (2005)

    Article  Google Scholar 

  56. Zou, Y., Yu, Z., Liu, X., Kumar, B.V.K.V., Wang, J.: Confidence regularized self-training. In: ICCV, pp. 5981–5990 (2019)

    Google Scholar 

  57. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Program for Guangdong Introducing Innovative and Enterpreneurial Teams (No.: 2017ZT07X183), National Natural Science Foundation of China (No.: 61771201), and Guangdong R &D key project of China (No.: 2019B010155001). Correspondence to Kui Jia (email: kuijia@scut.edu.cn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Jia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3955 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, H., Sun, L., Jia, K. (2022). Stochastic Consensus: Enhancing Semi-Supervised Learning with Consistency of Stochastic Classifiers. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics