Skip to main content

Personalizing Federated Medical Image Segmentation via Local Calibration

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13681))

Included in the following conference series:

Abstract

Medical image segmentation under federated learning (FL) is a promising direction by allowing multiple clinical sites to collaboratively learn a global model without centralizing datasets. However, using a single model to adapt to various data distributions from different sites is extremely challenging. Personalized FL tackles this issue by only utilizing partial model parameters shared from global server, while keeping the rest to adapt to its own data distribution in the local training of each site. However, most existing methods concentrate on the partial parameter splitting, while do not consider the inter-site in-consistencies during the local training, which in fact can facilitate the knowledge communication over sites to benefit the model learning for improving the local accuracy. In this paper, we propose a personalized federated framework with Local Calibration (LC-Fed), to leverage the inter-site in-consistencies in both feature- and prediction- levels to boost the segmentation. Concretely, as each local site has its alternative attention on the various features, we first design the contrastive site embedding coupled with channel selection operation to calibrate the encoded features. Moreover, we propose to exploit the knowledge of prediction-level in-consistency to guide the personalized modeling on the ambiguous regions, e.g., anatomical boundaries. It is achieved by computing a disagreement-aware map to calibrate the prediction. Effectiveness of our method has been verified on three medical image segmentation tasks with different modalities, where our method consistently shows superior performance to the state-of-the-art personalized FL methods. Code is available at https://github.com/jcwang123/FedLC.

J. Wang and Y. Jin—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreux, M., du Terrail, J.O., Beguier, C., Tramel, E.W.: Siloed federated learning for multi-centric histopathology datasets. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 129–139. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_13

    Chapter  Google Scholar 

  2. Batista, F.J.F., Diaz-Aleman, T., Sigut, J., Alayon, S., Arnay, R., Angel-Pereira, D.: Rim-one dl: A unified retinal image database for assessing glaucoma using deep learning. Image Anal. Stereology 39(3), 161–167 (2020). https://doi.org/10.5566/ias.2346, https://www.ias-iss.org/ojs/IAS/article/view/2346

  3. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Article  Google Scholar 

  4. Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)

    Article  Google Scholar 

  5. Bo, D., Wenhai, W., Deng-Ping, F., Jinpeng, L., Huazhu, F., Ling, S.: Polyp-pvt: polyp segmentation with pyramidvision transformers (2021)

    Google Scholar 

  6. Chen, Z., Zhu, M., Yang, C., Yuan, Y.: Personalized retrogress-resilient framework for real-world medical federated learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 347–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_33

    Chapter  Google Scholar 

  7. Collins, L., Hassani, H., Mokhtari, A., Shakkottai, S.: Exploiting shared representations for personalized federated learning. arXiv preprint. arXiv:2102.07078 (2021)

  8. Dinh, C.T., Vu, T.T., Tran, N.H., Dao, M.N., Zhang, H.: Fedu: a unified framework for federated multi-task learning with laplacian regularization. arXiv preprint. arXiv:2102.07148 (2021)

  9. Dong, B., Wang, W., Fan, D.P., Li, J., Fu, H., Shao, L.: Polyp-pvt: polyp segmentation with pyramid vision transformers. arXiv preprint. arXiv:2108.06932 (2021)

  10. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. In: Advances in Neural Information Processing Systems vol. 33, pp. 3557–3568 (2020)

    Google Scholar 

  11. Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Parallel reverse attention network for polyp segmentation. In: International conference on medical image computing and computer-assisted intervention. pp. 263–273. Springer (2020)

    Google Scholar 

  12. Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T., Johansen, D., Johansen, H.D.: Kvasir-seg: A segmented polyp dataset. In: International Conference on Multimedia Modeling. pp. 451–462. Springer (2020)

    Google Scholar 

  13. Ji, W., Yu, S., Wu, J., Ma, K., Bian, C., Bi, Q., Li, J., Liu, H., Cheng, L., Zheng, Y.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12341–12351 (June 2021)

    Google Scholar 

  14. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  15. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence 2(6), 305–311 (2020)

    Article  Google Scholar 

  16. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  17. Kulkarni, V., Kulkarni, M., Pant, A.: Survey of personalization techniques for federated learning. In: 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). pp. 794–797. IEEE (2020)

    Google Scholar 

  18. Li, D., Kar, A., Ravikumar, N., Frangi, A.F., Fidler, S.: Federated simulation for medical imaging. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 159–168. Springer (2020)

    Google Scholar 

  19. Li, W., Milletarì, F., Xu, D., Rieke, N., Hancox, J., Zhu, W., Baust, M., Cheng, Y., Ourselin, S., Cardoso, M.J., et al.: Privacy-preserving federated brain tumour segmentation. In: International workshop on machine learning in medical imaging. pp. 133–141. Springer (2019)

    Google Scholar 

  20. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: Fed{bn}: Federated learning on non-{iid} features via local batch normalization. In: International Conference on Learning Representations (2021), https://openreview.net/pdf?id=6YEQUn0QICG

  21. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: Feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  22. Liu, Q., Dou, Q., Yu, L., Heng, P.A.: MS-Net: Multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imaging 39(9), 2713–2724 (2020)

    Article  Google Scholar 

  23. Marfoq, O., Neglia, G., Bellet, A., Kameni, L., Vidal, R.: Federated multi-task learning under a mixture of distributions. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  24. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  25. Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  26. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: Fedpaq: a communication-efficient federated learning method with periodic averaging and quantization. In: International Conference on Artificial Intelligence and Statistics, pp. 2021–2031. PMLR (2020)

    Google Scholar 

  27. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  28. Sarhan, A., et al.: Utilizing transfer learning and a customized loss function for optic disc segmentation from retinal images. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  29. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  30. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2013). https://doi.org/10.1007/s11548-013-0926-3

    Article  Google Scholar 

  31. Silva, S., Gutman, B.A., Romero, E., Thompson, P.M., Altmann, A., Lorenzi, M.: Federated learning in distributed medical databases: meta-analysis of large-scale subcortical brain data. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 270–274. IEEE (2019)

    Google Scholar 

  32. Sivaswamy, J., Krishnadas, S., Chakravarty, A., Joshi, G., Tabish, A.S., et al.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Pap. 2(1), 1004 (2015)

    Google Scholar 

  33. Tan, A.Z., Yu, H., Cui, L., Yang, Q.: Towards personalized federated learning. IEEE Trans. Neural Networks Learn. Syst. (2022)

    Google Scholar 

  34. Thakur, N., Juneja, M.: Optic disc and optic cup segmentation from retinal images using hybrid approach. Expert Syst. Appl. 127, 308–322 (2019)

    Article  Google Scholar 

  35. Tian, Z., Liu, L., Zhang, Z., Fei, B.: Psnet: prostate segmentation on MRI based on a convolutional neural network. J. Med. Imaging 5(2), 021208 (2018)

    Article  Google Scholar 

  36. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Federated evaluation of on-device personalization. arXiv preprint. arXiv:1910.10252 (2019)

  37. Yu, T., Bagdasaryan, E., Shmatikov, V.: Salvaging federated learning by local adaptation. arXiv preprint. arXiv:2002.04758 (2020)

  38. Zavala-Romero, O., et al.: Segmentation of prostate and prostate zones using deep learning. Strahlenther. Onkol. 196(10), 932–942 (2020). https://doi.org/10.1007/s00066-020-01607-x

    Article  Google Scholar 

  39. Zhang, L., Lei, X., Shi, Y., Huang, H., Chen, C.: Federated learning with domain generalization. arXiv preprint. arXiv:2111.10487 (2021)

  40. Zhang, Q.L., Yang, Y.B.: Sa-net: shuffle attention for deep convolutional neural networks. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2235–2239. IEEE (2021)

    Google Scholar 

  41. Zhu, W., Kairouz, P., McMahan, B., Sun, H., Li, W.: Federated heavy hitters discovery with differential privacy. In: International Conference on Artificial Intelligence and Statistics, pp. 3837–3847. PMLR (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science and Technology of the People’s Republic of China (2021ZD0201900)(2021ZD0201903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 658 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Jin, Y., Wang, L. (2022). Personalizing Federated Medical Image Segmentation via Local Calibration. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics