Skip to main content

Contributions of Shape, Texture, and Color in Visual Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13672))

Included in the following conference series:

Abstract

We investigate the contributions of three important features of the human visual system (HVS)—shape, texture, and color—to object classification. We build a humanoid vision engine (HVE) that explicitly and separately computes shape, texture, and color features from images. The resulting feature vectors are then concatenated to support the final classification. We show that HVE can summarize and rank-order the contributions of the three features to object recognition. We use human experiments to confirm that both HVE and humans predominantly use some specific features to support the classification of specific classes (e.g., texture is the dominant feature to distinguish a zebra from other quadrupeds, both for humans and HVE). With the help of HVE, given any environment (dataset), we can summarize the most important features for the whole task (task-specific; e.g., color is the most important feature overall for classification with the CUB dataset), and for each class (class-specific; e.g., shape is the most important feature to recognize boats in the iLab-20M dataset). To demonstrate more usefulness of HVE, we use it to simulate the open-world zero-shot learning ability of humans with no attribute labeling. Finally, we show that HVE can also simulate human imagination ability with the combination of different features.

Y. Ge and Y. Xiao—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amir, Y., Harel, M., Malach, R.: Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. J. Comp. Neurol. 334(1), 19–46 (1993)

    Article  Google Scholar 

  2. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

    Google Scholar 

  3. Bendale, A., Boult, T.: Towards open world recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1893–1902 (2015)

    Google Scholar 

  4. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)

    Google Scholar 

  5. Borji, A., Izadi, S., Itti, L.: ilab-20m: A large-scale controlled object dataset to investigate deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2221–2230 (2016)

    Google Scholar 

  6. Brendel, W., Bethge, M.: Approximating CNNs with bag-of-local-features models works surprisingly well on imagenet. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). www.openreview.net/forum?id=SkfMWhAqYQ

  7. Cadieu, C.F., et al.: Deep neural networks rival the representation of primate it cortex for core visual object recognition. PLoS Comput. Biolo. 10(12), e1003963 (2014)

    Google Scholar 

  8. Cant, J.S., Goodale, M.A.: Attention to form or surface properties modulates different regions of human occipitotemporal cortex. Cereb. Cortex 17(3), 713–731 (2007)

    Article  Google Scholar 

  9. Cant, J.S., Large, M.E., McCall, L., Goodale, M.A.: Independent processing of form, colour, and texture in object perception. Perception 37(1), 57–78 (2008)

    Article  Google Scholar 

  10. Cheng, H., Wang, Y., Li, H., Kot, A.C., Wen, B.: Disentangled feature representation for few-shot image classification. CoRR abs/2109.12548 (2021). arxiv.org/abs/2109.12548

  11. DeYoe, E.A., et al.: Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. 93(6), 2382–2386 (1996)

    Article  Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). www.openreview.net/forum?id=YicbFdNTTy

  13. Fu, Y., Xiang, T., Jiang, Y.G., Xue, X., Sigal, L., Gong, S.: Recent advances in zero-shot recognition: toward data-efficient understanding of visual content. IEEE Sig. Process. Mag. 35(1), 112–125 (2018)

    Article  Google Scholar 

  14. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture and art with deep neural networks. Curr. Opin. Neurobiol. 46, 178–186 (2017)

    Article  Google Scholar 

  15. Gazzaniga, M.S., Ivry, R.B., Mangun, G.: Cognitive Neuroscience. The Biology of the Mind (2014) (2006)

    Google Scholar 

  16. Ge, Y., Abu-El-Haija, S., Xin, G., Itti, L.: Zero-shot synthesis with group-supervised learning. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). www.openreview.net/forum?id=8wqCDnBmnrT

  17. Ge, Y., Xiao, Y., Xu, Z., Li, L., Wu, Z., Itti, L.: Towards generic interface for human-neural network knowledge exchange (2021)

    Google Scholar 

  18. Ge, Y., et al.: A peek into the reasoning of neural networks: interpreting with structural visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2195–2204 (2021)

    Google Scholar 

  19. Ge, Y., Xu, J., Zhao, B.N., Itti, L., Vineet, V.: Dall-e for detection: language-driven context image synthesis for object detection. arXiv preprint arXiv:2206.09592 (2022)

  20. Gegenfurtner, K.R., Rieger, J.: Sensory and cognitive contributions of color to the recognition of natural scenes. Curr. Biol. 10(13), 805–808 (2000)

    Article  Google Scholar 

  21. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). www.openreview.net/forum?id=Bygh9j09KX

  22. Grill-Spector, K., Malach, R.: The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004)

    Article  Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  25. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  26. Jain, L.P., Scheirer, W.J., Boult, T.E.: Multi-class open set recognition using probability of inclusion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 393–409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_26

    Chapter  Google Scholar 

  27. Joseph, K., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5830–5840 (2021)

    Google Scholar 

  28. Julesz, B.: Binocular depth perception without familiarity cues: random-dot stereo images with controlled spatial and temporal properties clarify problems in stereopsis. Science 145(3630), 356–362 (1964)

    Article  Google Scholar 

  29. Khodadadeh, S., Bölöni, L., Shah, M.: Unsupervised meta-learning for few-shot image classification. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 10132–10142 (2019). www.proceedings.neurips.cc/paper/2019/hash/fd0a5a5e367a0955d81278062ef37429-Abstract.html

  30. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  31. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2009)

    Google Scholar 

  32. Li, Y., et al.: Shape-texture debiased neural network training. arXiv preprint arXiv:2010.05981 (2020)

  33. Oliva, A., Schyns, P.G.: Diagnostic colors mediate scene recognition. Cogn. Psychol. 41(2), 176–210 (2000). https://doi.org/10.1006/cogp.1999.0728

    Article  Google Scholar 

  34. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  35. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with semantic output codes. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7–10 December 2009, Vancouver, British Columbia, Canada, pp. 1410–1418. Curran Associates, Inc. (2009). www.proceedings.neurips.cc/paper/2009/hash/1543843a4723ed2ab08e18053ae6dc5b-Abstract.html

  36. Peuskens, H., Claeys, K.G., Todd, J.T., Norman, J.F., Van Hecke, P., Orban, G.A.: Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays. J. Cogn. Neurosci. 16(4), 665–682 (2004)

    Article  Google Scholar 

  37. Prabhudesai, M., Lal, S., Patil, D., Tung, H., Harley, A.W., Fragkiadaki, K.: Disentangling 3D prototypical networks for few-shot concept learning. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). www.openreview.net/forum?id=-Lr-u0b42he

  38. Puce, A., Allison, T., Asgari, M., Gore, J.C., McCarthy, G.: Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16(16), 5205–5215 (1996)

    Article  Google Scholar 

  39. Qi, L., et al.: Open-world entity segmentation. arXiv preprint arXiv:2107.14228 (2021)

  40. Rahman, S., Khan, S., Porikli, F.: A unified approach for conventional zero-shot, generalized zero-shot, and few-shot learning. IEEE Trans. Image Process. 27(11), 5652–5667 (2018)

    Article  MathSciNet  Google Scholar 

  41. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. arXiv preprint (2021)

    Google Scholar 

  42. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)

    Google Scholar 

  43. Schlimmer, J.C., Fisher, D.: A case study of incremental concept induction. In: AAAI, vol. 86, pp. 496–501 (1986)

    Google Scholar 

  44. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  45. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  46. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). www.arxiv.org/abs/1409.1556

  47. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  48. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 4077–4087 (2017). www.proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html

  49. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  50. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  51. Thomson, M.G.: Visual coding and the phase structure of natural scenes. Netw. Comput. Neural Syst. 10(2), 123 (1999)

    Google Scholar 

  52. Thrun, S., Mitchell, T.M.: Lifelong robot learning. Robot. Auton. Syst. 15(1–2), 25–46 (1995)

    Article  Google Scholar 

  53. Tokmakov, P., Wang, Y.X., Hebert, M.: Learning compositional representations for few-shot recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6372–6381 (2019)

    Google Scholar 

  54. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. Adv. Neural. Inf. Process. Syst. 29, 3630–3638 (2016)

    Google Scholar 

  55. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  56. Walther, D.B., Chai, B., Caddigan, E., Beck, D.M., Fei-Fei, L.: Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc. Natl. Acad. Sci. 108(23), 9661–9666 (2011). https://doi.org/10.1073/pnas.1015666108, https://www.pnas.org/doi/abs/10.1073/pnas.1015666108

  57. Wen, S., Rios, A., Ge, Y., Itti, L.: Beneficial perturbation network for designing general adaptive artificial intelligence systems. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  58. Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., DiCarlo, J.J.: Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. 111(23), 8619–8624 (2014)

    Article  Google Scholar 

  59. Zhu, J.Y., et al.: Visual object networks: image generation with disentangled 3D representations. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). www.proceedings.neurips.cc/paper/2018/file/92cc227532d17e56e07902b254dfad10-Paper.pdf

Download references

Acknowledgements

This work was supported by C-BRIC (one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA), DARPA (HR00112190134) and the Army Research Office (W911NF2020053). The authors affirm that the views expressed herein are solely their own, and do not represent the views of the United States government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhao Ge .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4277 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, Y., Xiao, Y., Xu, Z., Wang, X., Itti, L. (2022). Contributions of Shape, Texture, and Color in Visual Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19775-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19774-1

  • Online ISBN: 978-3-031-19775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics