Skip to main content

The Implications of Animal Manure Management on Ammonia and Greenhouse Gas Emissions

  • Chapter
  • First Online:
Technology for Environmentally Friendly Livestock Production

Abstract

High livestock densities and the subsequent generation of large quantities of manure, in some areas of the world, generate hotspots of increased environmental risks through ammonia (NH3) and greenhouse gas (methane, CH4; nitrous oxide, N2O) emissions. Livestock production is therefore facing increased pressures from society to comply with environmental legislation, so that production systems are managed in a sustainable and environmentally friendly manner. A key solution to minimize or avoid environmental and health concerns associated with manure is to ensure appropriate feeding strategies as well as manure management techniques through the entire manure management chain from animal housing, storage of manure, treatment operations and finally application to soil. An integrated framework is needed to allow practical, cost-effective on-farm strategies to be selected, which will reduce losses and improve resource use efficiencies.

In this chapter, we first analyse the contribution of manure management to NH3 and GHG emissions with focus on bovine, pig and poultry manure. We then describe different mitigation options for reducing gaseous emissions along the manure management chain in terms of their efficiency to decrease NH3 and GHG emissions and their applicability. Finally, we present and assess two case studies of integrated manure management strategies to reduce gaseous emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguerre, M. J., Wattiaux, M. A., & Powell, J. M. (2012). Emissions of ammonia, nitrous oxide, methane, and carbon dioxide during storage of dairy cow manure as affected by dietary forage-to-concentrate ratio and crust formation. Journal of Dairy Science, 95, 7409–7416.

    Article  CAS  PubMed  Google Scholar 

  • Al Seadi, T., Stupak, I., & Smith, C. T. (2018). Governance of environmental sustainability of manure-based centralised biogas production in Denmark. In J. D. Murphy (Ed.), IEA bioenergy task (Vol. 37, p. 7).

    Google Scholar 

  • Alberdi, O., Arriaga, H., Calvet, S., Estelles, F., & Merino, P. (2016). Ammonia and greenhouse gas emissions from an enriched cage laying hen facility. Biosystems Engineering, 144, 1–12.

    Article  Google Scholar 

  • Amon, M., Dobeic, M., Sneath, R. W., Phillips, V. R., Misselbrook, T. H., & Pain, B. F. (1997). A farm-scale study on the use of clinoptilolite zeolite and De-Odorases for reducing odour and ammonia emissions from broiler houses. Bioresource Technology, 61, 229–237.

    Article  CAS  Google Scholar 

  • Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems and Environment, 112, 153–162.

    Article  CAS  Google Scholar 

  • Andrews, J., Davison, T., & Pereira, J. (2016). Dairy farm layout and design: Building and yard design, warm climates. In G. Smithers (Ed.), Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00705-8

    Chapter  Google Scholar 

  • Arlabosse, P., Ferrasse, J.-H., Lecomte, D., Crine, M., Dumont, Y., & Léonard, A. (2012). Efficient sludge thermal processing: From drying to thermal valorization. Modern Drying Technology, 4, 295–329.

    CAS  Google Scholar 

  • Avalos-Ramirez, A., Godbout, S., Léveillée, F., Zegan, D., & Larouche, J.-P. (2012). Effect of temperature and air flow rate on carbon and nitrogen compounds changes during the biodrying of swine manure in order to produce combustible biomasses. Journal of Chemical Technology and Biotechnology, 87, 831–836.

    Article  CAS  Google Scholar 

  • Awiszus, S., Meissner, K., Reyer, S., & Müller, J. (2018). Ammonia and methane emissions during drying of dewatered biogas digestate in a two-belt conveyor dryer. Bioresource Technology, 247, 419–425.

    Article  CAS  PubMed  Google Scholar 

  • Baral, K. R., Jégo, G., Amon, B., Bol, R., Chantigny, M. H., Olesen, J. E., & Petersen, S. O. (2018). Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation. Agricultural Systems, 166, 26–35.

    Article  Google Scholar 

  • Bastami, M. S., Jones, D. L., & Chadwick, D. R. (2020). Microbial diversity dynamics during the self-acidification of dairy slurry. Environmental Technology, 42, 2562. https://doi.org/10.1080/09593330.2019.1706644

    Article  CAS  PubMed  Google Scholar 

  • Bittman, S., Dedina, M., Howard, C. M., Oenema, O., & Sutton, M. A. (Eds.). (2014). Options for ammonia mitigation: Guidance from the UNECE task force on reactive nitrogen. Centre for Ecology and Hydrology.

    Google Scholar 

  • Bobrowski, A. B., Willink, D., Janke, D., Amon, T., Hagenkamp-Korth, F., Hasler, M., & Hartung, E. (2021). Reduction of ammonia emissions by applying a urease inhibitor in naturally ventilated dairy barns. Biosystems Engineering, 204, 104–114.

    Article  CAS  Google Scholar 

  • Braam, C. R., Smits, M. C. J., Gunnink, H., & Swierstra, D. (1997). Ammonia emission from a double-sloped floor in a cubicle house for dairy cows. Journal of Agricultural Engineering Research, 68, 375–386.

    Article  Google Scholar 

  • Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B., & Misselbrook, T. (2011). Manure management: Implications for greenhouse gas emissions. Animal Feed Science and Technology, 166, 514–531.

    Article  Google Scholar 

  • Chadwick, D., Jia, W., Tong, Y., Yu, G., Shen, Q., & Chen, Q. (2015). Improving manure nutrient management towards sustainable agricultural intensification in China. Agriculture, Ecosystems and Environment, 209, 34–46.

    Article  Google Scholar 

  • Chadwick, D. R., Williams, J. R., Lu, Y., Ma, L., Bai, Z., Hou, Y., Chen, X., & Misselbrook, T. H. (2020). Strategies to reduce nutrient pollution from manure management in China. Frontiers of Agricultural Science and Engineering, 7(1), 45–55.

    Article  Google Scholar 

  • Chantigny, M. H., Angers, D. A., Rochette, P., Bélanger, G., Massé, D., & Côté, D. (2007). Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. Journal of Environmental Quality, 36, 1864–1872.

    Article  CAS  PubMed  Google Scholar 

  • Charles, A., Rochette, P., Whalen, J. K., Angers, D. A., Chantigny, M. H., & Bertrand, N. (2017). Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. Agriculture, Ecosystems and Environment, 236, 88–98.

    Article  CAS  Google Scholar 

  • Chianese, D. S., Rotz, C. A., & Richard, T. L. (2009). Whole-farm gas emissions: A review with application to a Pennsylvania dairy farm. Applied Engineering in Agriculture, 25, 431–442.

    Article  Google Scholar 

  • Clemens, J., Trimborn, M., Weiland, P., & Amon, B. (2006). Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems and Environment, 112, 171–177.

    Article  CAS  Google Scholar 

  • De Vries, J., Hoogmoed, W., Groenestein, C., Schröder, J., Sukkel, W., De Boer, I., & Koerkamp, P. G. (2015). Integrated manure management to reduce environmental impact: I. Structured design of strategies. Agricultural Systems, 139, 29–37.

    Article  Google Scholar 

  • Edwards, J., Othman, M., & Burn, S. (2015). A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renewable and Sustainable Energy Reviews, 52, 815–828.

    Article  Google Scholar 

  • EEA. (2019). National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention) (database). European Environment Agency (EEA). Published 23 July 2020, from https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-convention-on-long-rangetransboundary-air-pollution-lrtap-convention-12#tab-metadata

  • Elliot, H. A., & Collins, N. E. (1983). Chemical methods for controlling ammonia release from poultry manure (ASAE paper no. 83-4521). American Society of Agricultural Engineers.

    Google Scholar 

  • EMEP-EEA. (2016). EMEP/EEA air pollutant emission inventory guidebook 2013 (EEA Report No 21/2016). European Environment Agency (EEA). https://doi.org/10.2800/247535. http://www.eea.europa.eu/publications/emepeea-guidebook-2016

    Book  Google Scholar 

  • Energistyrelsen. (2018). Månedlig og årlig energistatistik. (In English: Monthly and annual energy statistics). https://ens.dk/service/statistik-data-noegletal-og-kort/maanedlig-og-aarlig-energistatistik

  • Eugene, B., Moore, P. A., Li, H., Miles, D., Trabue, S., Burns, R., & Buser, M. (2015). Effect of alum additions to poultry litter on in-house ammonia and greenhouse gas concentrations and emissions. Journal of Environmental Quality, 44, 1530–1540.

    Article  CAS  PubMed  Google Scholar 

  • Evans, L., VanderZaag, A. C., Sokolov, V., Baldé, H., MacDonald, D., Wagner-Riddle, C., & Gordon, R. (2018). Ammonia emissions from the field application of liquid dairy manure after anaerobic digestion or mechanical separation in Ontario, Canada. Agricultural and Forest Meteorology, 258, 89–95.

    Article  Google Scholar 

  • Fangueiro, D., Coutinho, J., Chadwick, D., Moreira, N., & Trindade, H. (2008). Effect of cattle slurry separation on greenhouse gas and ammonia emissions during storage. Journal of Environmental Quality, 37, 2322–2331.

    Article  CAS  PubMed  Google Scholar 

  • Fangueiro, D., Ribeiro, H., Coutinho, J., Cardenas, L., Trindade, H., Cunha-Queda, C., Vasconcelos, E., & Cabral, F. (2010). Nitrogen mineralization and CO2 and N2O emissions in a sandy soil amended with original or acidified pig slurries or with the relative fractions. Biology and Fertility of Soils, 46, 383–391.

    Article  Google Scholar 

  • Fangueiro, D., Hjorth, M., & Gioelli, F. (2015). Acidification of animal slurry – A review. Journal of Environmental Management, 149, 46–56.

    Article  CAS  PubMed  Google Scholar 

  • Fangueiro, D., Pereira, J. L. S., Fraga, I., Surgy, S., Vasconcelos, E., & Coutinho, J. (2018). Band application of acidified slurry as an alternative to slurry injection in a Mediterranean double cropping system: Agronomic effect and gaseous emissions. Agriculture, Ecosystems and Environment, 267, 87–99.

    Article  Google Scholar 

  • Finzi, A., Riva, E., Bicoku, A., Guido, V., Shallari, S., & Provolo, G. (2019). Comparison of techniques for ammonia emission mitigation during storage of livestock manure and assessment of their effect in the management chain. Journal of Agricultural Engineering, 50, 12–19.

    Google Scholar 

  • Flesch, T. K., Desjardins, R. L., & Worth, D. (2011). Fugitive methane emissions from an agricultural biodigester. Biomass and Bioenergy, 35, 3927–3935.

    Article  CAS  Google Scholar 

  • Foged, H. L. (2012). Livestock manure to energy – Status, technologies and innovation in Denmark. AgroBusiness Park.

    Google Scholar 

  • Foged, H. L., Flotats, X., Blasi, A. B., Schelde, K. M., Palatsi, J., Magri, A., & Juznik, Z. (2011a). Assessment of economic feasibility and environmental performance of manure processing technologies (Technical Report No. IV to the European Commission, Directorate-General Environment). Unpublished draft. 130 pp.

    Google Scholar 

  • Foged, H. L., Flotats, X., Blasi, A. B., Palatsi, J., Magri, A., & Schelde, K. M. (2011b). Inventory of manure processing activities in Europe (Technical Report No. I Concerning “Manure Processing Activities in Europe” to the European Commission). Directorate-General Environment. 138 pp.

    Google Scholar 

  • Ghaly, A. E., & MacDonald, K. N. (2012). An effective passive solar dryer for thin layer drying of poultry manure. American Journal of Engineering and Applied Sciences, 5, 136–150.

    Article  Google Scholar 

  • Gilhespy, S. L., Webb, J., Chadwick, D. R., Misselbrook, T. H., Kay, R., Camp, V., Retter, A. L., & Bason, A. (2009). Will additional straw bedding in buildings housing cattle and pigs reduce ammonia emissions? Biosystems Engineering, 102, 180–189.

    Article  Google Scholar 

  • Gómez-Muñoz, B., Case, S. D. C., & Jensen, L. S. (2016). Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions. Journal of Environmental Management, 168, 236–244.

    Article  PubMed  Google Scholar 

  • Groot-Koerkamp, P. W. G. (1994). Review on emissions of ammonia from housing systems for laying hens in relation to sources, processes, building design and manure handling. Journal of Agricultural Engineering Research, 59, 73–87.

    Article  Google Scholar 

  • Groot-Koerkamp, P. W. G., Keen, A., Van Niekerk, T. G. C. M., & Smit, S. (1995). The effect of manure and litter handling and indoor climatic conditions on ammonia emissions from a battery cage and an aviary housing system for laying hens. Netherlands Journal of Agricultural Science, 43, 351–373.

    Article  Google Scholar 

  • Guilayn, F., Jimenez, J., Rouez, M., Crest, M., & Patureau, D. (2018). Digestate mechanical separation: Efficiency profiles based on anaerobic digestion feedstock and equipment choice. Bioresource Technology, 274, 180–189.

    Article  PubMed  Google Scholar 

  • Gustafsson, M., Ammenberg, J., & Ammenberg, J. (2019). IEA bioenergy task 37 – Country reports summaries 2019. IEA Bioenergy.

    Google Scholar 

  • Habtewold, J., Gordon, R., Sokolov, V., VanderZaag, A., Wagner-Riddle, C., & Dunfield, K. (2018). Reduction in methane emissions from acidified dairy slurry is related to inhibition of methanosarcina species. Frontiers in Microbiology, 9, 2806.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagenkamp-Korth, F., Haeussermann, A., & Hartung, E. (2015). Effect of urease inhibitor application on urease activity in three different cubicle housing systems under practical conditions. Agriculture, Ecosystems and Environment, 202, 168–177.

    Article  CAS  Google Scholar 

  • Hellsten, S., Dalgaard, T., Rankinen, K., Tørseth, K., Bakken, L., Bechmann, M., Kulmala, A., Moldan, F., Olofsson, S., Piil, K., Pira, K., & Turtola, E. (2019). Abating N in Nordic agriculture – Policy, measures and way forward. Journal of Environmental Management, 236, 674–686.

    Article  CAS  PubMed  Google Scholar 

  • Hjorth, M., Christensen, K. V., Christensen, M. L., & Sommer, S. G. (2010). Solid-liquid separation of animal slurry in theory and practice. A review. Agronomy for Sustainable Development, 30, 153–180.

    Article  CAS  Google Scholar 

  • Holly, M. A., Larson, R. A., Powell, J. M., Ruark, M. D., & Aguirre-Villegas, H. (2017). Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agriculture, Ecosystems and Environment, 239, 410–419.

    Article  CAS  Google Scholar 

  • Hou, Y., Velthof, G. L., & Oenema, O. (2015). Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Global Change Biology, 21, 1293–1312.

    Article  PubMed  Google Scholar 

  • Hou, Y., Velthof, G. L., Lesschen, J. P., Staritsky, I. G., & Oenema, O. (2017). Nutrient recovery and emissions of ammonia, nitrous oxide and methane from animal manure in Europe: Effects of manure treatment technologies. Environmental Science & Technology, 51, 375–383.

    Article  CAS  Google Scholar 

  • Hrad, M., Piringer, M., & Huber-Humer, M. (2015). Determining methane emissions from biogas plants – Operational and meteorological aspects. Bioresource Technology, 191, 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Hristov, A. N., Hanigan, M., Cole, A., Todd, R., McAllister, T. A., Ndegwa, P. M., & Rotz, A. (2011). Review: Ammonia emissions from dairy farms and beef feedlots. Canadian Journal of Animal Science, 91, 1–35.

    Article  CAS  Google Scholar 

  • Jensen, L. S. (2013). Animal manure residue upgrading and nutrient recovery in biofertilisers. In S. G. Sommer, M. L. Christensen, T. Schmidt, & L. S. Jensen (Eds.), Animal manure recycling: treatment and management (pp. 271–294). Wiley.

    Chapter  Google Scholar 

  • Kai, P., Pedersen, P., Jensen, J. E., Hansen, M. N., & Sommer, S. G. (2008). A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions. European Journal of Agronomy, 28, 148–154.

    Article  CAS  Google Scholar 

  • Kanani, F., Heidari, M. D., Brandon, H., Gilroyed, B. H., & Pelletier, N. (2020). Waste valorization technology options for the egg and broiler industries: A review and recommendations. Journal of Cleaner Production, 262, 121–129.

    Article  Google Scholar 

  • Kupper, T., Häni, C., Neftel, A., Kincaid, C., Bühler, M., Amon, B., & VanderZaag, A. (2020). Ammonia and greenhouse gas emissions from slurry storage – A review. Agriculture, Ecosystems and Environment, 300, 106963.

    Article  CAS  Google Scholar 

  • Lee, C., Hristov, A. N., Cassidy, T. W., & Heyler, K. (2011). Nitrogen isotope fractionation and origin of ammonia nitrogen volatilized from cattle manure in simulated storage. Atmosphere, 2, 256–270.

    Article  CAS  Google Scholar 

  • Lee, C., Hristov, A., Dell, C., Feyereisen, G., Kaye, J., & Beegle, D. (2012). Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure. Journal of Dairy Science, 95, 1930–1941.

    Article  CAS  PubMed  Google Scholar 

  • Leroy, F., Abraini, F., Beal, T., Dominguez-Salas, P., Gregorini, P., Manzano, P., Rowntree, J., & van Vliet, S. (2022). Animal source foods in healthy, sustainable, and ethical diets-an argument against drastic limitation of livestock in the food system. Animal, 16(100457), 1–15.

    Google Scholar 

  • Li, X., Li, B., & Tong, Q. (2020). The effect of drying temperature on nitrogen loss and pathogen removal in laying hen manure. Sustainability, 12, 403.

    Article  CAS  Google Scholar 

  • Loyon, L., Guiziou, F. V., Beline, F., & Peu, P. (2007). Gaseous emissions (NH3, N2O, CH4 and CO2) from the aerobic treatment of piggery slurry-comparison with a conventional storage system. Biosystems Engineering, 97, 472–480.

    Article  Google Scholar 

  • Loyon, L., Burton, C. H., Misselbrook, T., Webb, J., Phillipe, F. X., Aguilar, M., Doreau, M., Hassouna, M., Veldkamp, T., Dourmad, J. Y., Bonmati, A., Grimm, E., & Sommer, S. G. (2016). Best available technology for European livestock farms: Availability, effectiveness and uptake. Journal of Environmental Management, 166, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Saggar, S., Bhandral, R., Bolan, N., Ledgard, S., Lindsey, S., & Sun, W. (2008). Effects of irrigating dairy-grazed grassland with farm dairy effluent on nitrous oxide emissions. Plant and Soil, 309, 119–130.

    Article  CAS  Google Scholar 

  • Lybaek, R., Christensen, T. B., & Kjaer, T. (2013). Governing innovation for sustainable development in the Danish Biogas Sector: A historical overview and analysis of innovation. Sustainable Development, 21, 171–182.

    Article  Google Scholar 

  • McCrory, D. F., & Hobbs, P. J. (2001). Additives to reduce ammonia and odor emissions from livestock wastes: A review. Journal of Environmental Quality, 30, 345–355.

    Article  CAS  PubMed  Google Scholar 

  • Méda, B., Hassouna, M., Aubert, C., Robin, P., & Dourmad, J. Y. (2011). Influence of rearing conditions and manure management practices on ammonia and greenhouse gas emissions from poultry houses. World’s Poultry Science Journal, 67, 441–456.

    Article  Google Scholar 

  • Medinets, S., Skiba, U., Rennenberg, H., & Butterbach-Bahl, K. (2015). A review of soil NO transformation: Associated processes and possible physiological significance on organisms. Soil Biology and Biochemistry, 80, 92–117.

    Article  CAS  Google Scholar 

  • Melse, R. W., & Ogink, N. W. M. (2005). Air scrubbing techniques for ammonia and odour reduction at livestock operations: Review of on farm research in the Netherlands. Transactions of ASAE, 48, 2303–2313.

    Article  CAS  Google Scholar 

  • Melse, R. W., Ogink, N. W. M., & Rulkens, W. H. (2009). Overview of European and Netherlands’ regulations on airborne emissions from intensive livestock production with a focus on the application of air scrubbers. Biosystems Engineering, 104, 289–298.

    Article  Google Scholar 

  • Miola, E. C. C., Rochette, P., Chantigny, M. H., Angers, D. A., Aita, C., Gasser, M. O., Pelster, D., & Bertrand, N. (2014). Ammonia volatilization after surface application of laying-hen and broiler-chicken manures. Journal of Environmental Quality, 43, 1864–1872.

    Article  PubMed  Google Scholar 

  • Misselbrook, T. H., Smith, K. A., Johnson, R. A., & Pain, B. F. (2002). Slurry application techniques to reduce ammonia emissions: Results of some UK field-scale experiments. Biosystems Engineering, 81, 313–321.

    Article  Google Scholar 

  • Misselbrook, T. H., Smith, K. A., Jackson, D. R., & Gilhespy, S. L. (2004). Ammonia emissions from irrigation of dilute pig slurries. Biosystems Engineering, 89, 473–484.

    Article  Google Scholar 

  • Misselbrook, T. H., Brookman, S. K. E., Smith, K. A., Cumby, T. R., Williams, A. G., & McCrory, D. F. (2005). Crusting of stored dairy slurry to abate ammonia emissions: Pilot-scale studies. Journal of Environmental Quality, 34, 411–419.

    Article  CAS  PubMed  Google Scholar 

  • Misselbrook, T. H., Webb, J., & Gilhespy, S. L. (2006). Ammonia emissions from outdoor concrete yards used by livestock e quantification and mitigation. Atmospheric Environment, 40, 6752–6763.

    Article  CAS  Google Scholar 

  • Misselbrook, T., Hunt, J., Perazzolo, F., & Provolo, G. (2016). Greenhouse gas and ammonia emissions from slurry storage: Impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry). Journal of Environmental Quality, 45, 1520–1530.

    Article  CAS  PubMed  Google Scholar 

  • Montes, F., Meinen, R., Dell, C., Rotz, A., Hristov, A. N., Oh, J., Waghorn, G., Gerber, P. J., Henderson, B., & Makkar, H. P. S. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management options. Journal of Animal Science, 91, 5070–5094.

    Article  CAS  PubMed  Google Scholar 

  • Naseem, S., & King, A. J. (2018). Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environmental Science and Pollution Research, 25, 15269–15293.

    Article  CAS  PubMed  Google Scholar 

  • Ndegwa, P. M., Hristov, A. N., Arogo, J., & Sheffield, R. E. (2008). A review of ammonia emission mitigation techniques for concentrated animal feeding operations. Biosystems Engineering, 100, 453–469.

    Article  Google Scholar 

  • Neerackal, G. M., Ndegwa, P. M., Joo, H. S., Wang, X., Harrison, J. H., Heber, A. J., Ni, J. Q., & Frear, C. (2015). Effects of anaerobic digestion and solids separation on ammonia emissions from stored and land applied dairy manure. Water, Air, and Soil Pollution, 226, 301.

    Article  Google Scholar 

  • Nicholson, F. A., Chambers, B. J., & Walker, A. W. (2004). Ammonia emissions from broiler litter and laying hen manure management systems. Biosystems Engineering, 89, 175–185.

    Article  Google Scholar 

  • Nielsen, D. A., Nielsen, L. P., Schramm, A., & Revsbech, N. P. (2010). Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts. Journal of Environmental Quality, 39, 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, O.-K., Plejdrup, M. S., Winther, M., Mikkelsen, M. H., Nielsen, M., Gyldenkærne, S., Fauser, P., Albrektsen, R., Hjelgaard, K. H., Bruun, H. G., & Thomsen, M. (2020). Annual Danish informative inventory report to UNECE. Emission inventories from the base year of the protocols to year 2017 (Scientific Report No. 369). Aarhus University, DCE – Danish Centre for Environment and Energy, 559 pp. http://dce2.au.dk/pub/SR369.pdf

  • Oenema, O., Velthof, G., Klimont, Z., & Winiwarter, W. (2012). Emissions from agriculture and their control potentials TSAP Report #3 Version 2.1. In M. Amann (Ed.). IIASA. 45 pp.

    Google Scholar 

  • Ogink, N. W. M., & Kroodsma, W. (1996). Reduction of ammonia emission from a cow cubicle house by flushing with water or a formalin solution. Journal of Agricultural Engineering Research, 63, 197–204.

    Article  Google Scholar 

  • Olesen, J. E., & Sommer, S. G. (1993). Modelling eVects of wind-speed and surface cover on ammonia volatilization from stored pig slurry. Atmospheric Environment, 27(16), 2567–2574.

    Google Scholar 

  • Pantelopoulos, A., Magid, J., & Jensen, L. S. (2016). Thermal drying of the solid fraction from biogas digestate: Effects of acidification, temperature and ventilation on nitrogen content. Waste Management, 48, 218–226.

    Article  CAS  PubMed  Google Scholar 

  • Perazzolo, F., Mattachini, G., Tambone, F., Misselbrook, T., & Provolo, G. (2015). Effect of mechanical separation on emissions during storage of two anaerobically codigested animal slurries. Agriculture, Ecosystems and Environment, 207, 1–9.

    Article  CAS  Google Scholar 

  • Pereira, J. L. S., Ferreira, S., Pinheiro, V., & Trindade, H. (2019a). Effect of magnesium sulphate addition to broiler litter on the ammonia, nitrous oxide, carbon dioxide and methane emissions from housing. Atmospheric Pollution Research, 10, 1284–1290.

    Article  CAS  Google Scholar 

  • Pereira, J. L. S., Ferreira, S., Pinheiro, V., & Trindade, H. (2019b). Ammonia and greenhouse gas emissions following the application of clinoptilolite on the litter of a breeding hen house. Environmental Science and Pollution Research, 26, 8352–8357.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, J. L. S., Perdigão, A., Marques, F., Coelho, C., Mota, M., & Fangueiro, D. (2021). Evaluation of tomato-based packing material for retention of ammonia, nitrous oxide, carbon dioxide and methane in gas phase biofilters: A laboratory study. Agronomy, 11, 360.

    Article  CAS  Google Scholar 

  • Petersen, S. (2018). Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation. Journal of Dairy Science, 101, 6642–6654.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, S. O., Amon, B., & Gattinger, A. (2005). Methane oxidation in slurry storage surface crusts. Journal of Environmental Quality, 34, 455–461.

    CAS  PubMed  Google Scholar 

  • Petersen, S. O., & Miller, D. N. (2006). Greenhouse gas mitigation by covers on livestock slurry tanks and lagoons? Journal of Environmental Science and Health. Part. B, 86, 1407–1411.

    CAS  Google Scholar 

  • Petersen, S. O., & Ambus, P. (2006). Methane oxidation in pig and cattle slurry storages, and effects of surface crust moisture and methane availability. Nutr. Cycl. Agroecosys, 74, 1–11.

    Article  Google Scholar 

  • Petersen, S. O., Blanchard, M., Chadwick, D., Del Prado, A., Edouard, N., Mosquera, J., & Sommer, S. G. (2013). Manure management for greenhouse gas mitigation. Animal, 7, 266–282.

    Article  PubMed  Google Scholar 

  • Petersen, S. O., Højberg, O., Poulsen, M., Schwab, C., & Eriksen, J. (2014). Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. Journal of Applied Microbiology, 117, 160–172.

    Article  CAS  PubMed  Google Scholar 

  • Philippe, F. X., Remience, V., Dourmad, J. Y., Cabaraux, J. F., Vandenheede, M., & Nicks, B. (2008). Les fibres dans l’alimentation des truies gestantes: effets sur la nutrition, le comportement, les performances et les rejets dans l’environnement. INRA Productions Animales, 21, 277–290.

    Article  Google Scholar 

  • Philippe, F. X., Cabaraux, J. F., & Nicks, B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agriculture, Ecosystems and Environment, 141, 245–260.

    Article  CAS  Google Scholar 

  • Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360, 987–992.

    Article  CAS  PubMed  Google Scholar 

  • Popovic, O., Hjorth, M., & Jensen, L. (2012). Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry. Environmental Technology, 33, 2119–2131.

    Article  CAS  PubMed  Google Scholar 

  • Prado, J., Chieppe, J., Raymundo, A., & Fangueiro, D. (2020). Bio-acidification and enhanced crusting as an alternative to sulphuric acid addition to slurry to mitigate ammonia and greenhouse gases emissions during short term storage. Journal of Cleaner Production, 263, 121443.

    Article  CAS  Google Scholar 

  • Regueiro, I., Coutinho, J., & Fangueiro, D. (2016a). Alternatives to sulfuric acid for slurry acidification: Impact on slurry composition and ammonia emissions during storage. Journal of Cleaner Production, 131, 296–307.

    Article  CAS  Google Scholar 

  • Regueiro, I., Coutinho, J., Gioelli, F., Balsari, P., Dinuccio, E., & Fangueiro, D. (2016b). Acidification of raw and co-digested pig slurries with alum before mechanical separation reduces gaseous emission during storage of solid and liquid fractions. Agriculture, Ecosystems and Environment, 227, 42–51.

    Article  CAS  Google Scholar 

  • Rehl, T., & Müller, J. (2011). Life cycle assessment of biogas digestate processing technologies. Resources, Conservation and Recycling, 56, 92–104.

    Article  Google Scholar 

  • Reidy, B., & Menzi, H. (2007). Assessment of the ammonia abatement potential of different geographical regions and altitudinal zones based on a large-scale farm and manure management survey. Biosystems Engineering, 97, 520–531.

    Article  Google Scholar 

  • Rosa, E., Arriaga, H., & Merino, P. (2020). Ammonia emission from a manure-belt laying hen facility equipped with an external manure drying tunnel. Journal of Cleaner Production, 251, 119591.

    Article  CAS  Google Scholar 

  • Sajeev, E. P. M., Winiwarter, W., & Amon, B. (2018). Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: Abatement options and emission interactions. Journal of Environmental Quality, 47, 30–41.

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez, A. R., Carswell, A. M., Shaw, R., Hunt, J., Saunders, K., Cotton, R., Chadwick, D. R., Jones, D. L., & Misselbrook, T. H. (2018). Advanced processing of food waste based digestate for mitigating nitrogen losses in a winter wheat crop. Frontiers in Sustainable Food Systems, 2, 35.

    Article  Google Scholar 

  • Santonja, G. G., Georgitzikis, K., Scalet, B. M., Montobbio, P., Roudier, S., Sancho, L. D. (2017). Best available techniques (BAT) reference document for the intensive rearing of poultry or pigs. EUR 28674 EN. 858 pp.

    Google Scholar 

  • Scarlat, N., Fahl, F., Dallemand, J.-F., Monforti, F., & Motola, V. (2018). A spatial analysis of biogas potential from manure in Europe. Renewable and Sustainable Energy Reviews, 94, 915–930.

    Article  Google Scholar 

  • Sherlock, R. R., Sommer, S. G., Khan, R. Z., Wood, C. W., Guertal, E. A., Freney, J. R., Dawson, C. O., & Cameron, K. C. (2002). Ammonia, methane, and nitrous oxide emission from pig slurry applied to a pasture in New Zealand. Journal of Environmental Quality, 31, 1491–1501.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K., Cumby, T., Lapworth, J., Misselbrook, T., & Williams, A. (2007). Natural crusting of slurry storage as an abatement measure for ammonia emissions in dairy farms. Biosystems Engineering, 97, 464–471.

    Article  Google Scholar 

  • Sommer, S. G. (1997). Ammonia volatilization from farm tanks containing anaerobically digested animal slurry. Atmospheric Environment, 31, 863–868.

    Article  CAS  Google Scholar 

  • Sommer, S. G., Petersen, S. O., & Søgaard, H. T. (2000). Greenhouse gas emission from stored livestock slurry. Journal of Environmental Quality, 29, 744–751.

    Article  CAS  Google Scholar 

  • Sommer, S. G., Zhang, G. Q., Bannink, A., Chadwick, D., Misselbrook, T., Harrison, R., Hutchings, N. J., Menzi, H., Monteny, G. J., Ni, J. Q., Oenema, O., & Webb, J. (2006). Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores. Advances in Agronomy, 89, 261–335.

    Article  Google Scholar 

  • Sommer, S. G., Christensen, M. L., Schmidt, T., & Jensen, L. S. (2013). Animal manure recycling: Treatment and management. Wiley. 384 pp.

    Book  Google Scholar 

  • Sommer, S. G., Webb, J., & Hutchings, N. D. (2019). New emission factors for calculation of ammonia volatilization from European livestock manure management systems. Frontiers in Sustainable Food Systems, 3, 101.

    Google Scholar 

  • Sørensen, P., & Børgesen, C. D. (2016). Anaerobic digestion of organic manures and effects on nitrate leaching estimated under Danish conditions. In 19th Nitrogen Workshop: efficient use of different sources of nitrogen in agriculture – from theory to practice (pp. 355). Skara, Sweden 27 June–29 June 2016.

    Google Scholar 

  • Statistics Finland. (2020). Greenhouse gas emissions in energy supply and land transport declined in 2017. Accessed on 1 Aug 2020, available at: https://www.stat.fi/til/tilma/2017/tilma_2017_2019-10-08_tie_001_en.html

  • Statistics Sweden. (2020). Emissions of air pollutants from agriculture by subsector. Year 1990–2018. Accessed on 1 Aug 2020, available at: http://www.statistikdatabasen.scb.se/pxweb/sv/ssd/

  • Stevens, R. J., & Laughlin, R. J. (1997). The impact of cattle slurries and their management on ammonia and nitrous oxide emissions from grassland. In S. C. Jarvis & B. F. Pain (Eds.), Gaseous nitrogen emissions from grasslands (pp. 223–256). CAB International.

    Google Scholar 

  • Svanbäck, A., McCrackin, M. L., Swaney, D. P., Linefur, H., Gustafsson, B. G., Howarth, R. W., & Humborg, C. (2018). Reducing agricultural nutrient surpluses in a large catchment – Links to livestock density. Science of the Total Environment, 648, 1549–1559.

    Article  PubMed  Google Scholar 

  • Swierstra, D., Braam, C. R., & Smits, M. C. (2001). Grooved floor system for cattle housing: Ammonia emission reduction and good slip resistance. Applied Engineering in Agriculture, 17, 85–90.

    Article  Google Scholar 

  • Tambone, F., Orzi, V., D’Imporzano, G., & Adani, F. (2017). Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresource Technology, 243, 1251–1256.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, R. B., & Meisinger, J. J. (2002). Management factors affecting ammonia volatilization from land-applied cattle slurry in the mid-Atlantic USA. Journal of Environmental Quality, 31, 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  • UNCC. (2021). United Nations Climate Change (UNCC). Guidance document on integrated sustainable nitrogen management. https://unece.org/environment/documents/2021/04/working-documents/guidance-document-integrated-sustainable-nitrogen. Accessed 16 Aug 2019.

  • Uwizeye, A., de Boer, I. J. M., Opio, C., Schulte, R. P. O., Falcucci, A., Tempio, G., Teillard, F., Casu, F. A. M., Rulli, M., Galloway, J. N., Leip, A., Erisman, J. W., Robinson, T. P., Steinfeld, H., & Gerrber, P. J. (2020). Nitrogen emissions along global livestock supply chains. Nature Food, 1, 437–446.

    Article  CAS  Google Scholar 

  • Van der Heyden, C., Demeyer, C., & Volcke, E. I. P. (2015). Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: State-of-the-art and perspectives. Biosystems Engineering, 134, 74–93.

    Article  Google Scholar 

  • Van der Stelt, B., Temminghoff, E. J. M., Van Vliet, P. C. J., & Van Riemsdijk, W. H. (2007). Volatilization of ammonia from manure as affected by manure additives, temperature and mixing. Bioresource Technology Reports, 98, 3449–3455.

    Article  Google Scholar 

  • Van der Zaag, A. C., Gordon, R. J., Glass, V. M., & Jamieson, R. C. (2008). Floating covers to reduce gas emissions from liquid manure storages: A review. Applied Engineering in Agriculture, 24, 657–671.

    Article  Google Scholar 

  • Van der Zaag, A. C., Gordon, R. J., Jamieson, R. C., Burton, D. L., & Stratton, G. W. (2009). Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Transactions of the ASABE, 52, 599–608.

    Article  Google Scholar 

  • Viguria, M., Sanz-Cobeña, A., López, D. M., Arriaga, H., & Merino, P. (2014). Ammonia and greenhouse gases emission from impermeable covered storage and land spreading of cattle slurry. Agriculture, Ecosystems and Environment, 199, 261–271.

    Article  Google Scholar 

  • Webb, J., Chadwick, D., & Ellis, S. (2004). Emissions of ammonia and nitrous oxide following incorporation into the soil of farmyard manures stored at different densities. Nutrient Cycling in Agroecosystems, 70, 67–76.

    Article  CAS  Google Scholar 

  • Webb, J., Eurich-Menden, B., Dämmgen, U., & Agostini, F. (2009). Review of published studies estimating the abatement efficacy of reduced-emission slurry spreading techniques. In M. A. Sutton, S. Reis, & S. M. Baker (Eds.), Atmospheric ammonia. Springer. https://doi.org/10.1007/978-1-4020-9121-6_14

    Chapter  Google Scholar 

  • Webb, J., Pain, B., Bittman, S., & Morgan, J. (2010). The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response: A review. Agriculture, Ecosystems and Environment, 137, 39–46.

    Article  Google Scholar 

  • Webb, J., Sommer, S. G., Kupper, T., Groenestein, K., Hutchings, N. J., Eurich-Menden, B., Rodhe, L., Misselbrook, T. H., & Amon, B. (2012). Emissions of ammonia, nitrous oxide and methane during the management of solid manures. In E. Lichtfouse (Ed.), Agroecology and strategies for climate change. Sustainable agriculture reviews (Vol. 8). Springer.

    Google Scholar 

  • Winkel, A., Mosquera, J., Aarnink, A. J. A., Groot Koerkamp, P. W. G., & Ogink, N. (2017). Evaluation of manure drying tunnels to serve as dust filters in the exhaust of laying hen houses: Emissions of particulate matter, ammonia, and odour. Biosystems Engineering, 162, 81–98.

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by (1) the Project Nutri2Cycle: H2020-SFS-30-2017- ‘Transition towards a more carbon and nutrient efficient agriculture in Europe’, funded from the European Union, Program Horizon 2020 (Grant Agreement No 773682); (2) the Project CleanSlurry ‘Animal slurry hygienization for use in industrial horticulture, funded by FCT (PTDC/ASP-SOL/28769/2017); (3) LEAF (Linking Landscape, Environment, Agriculture and Food Research Unit), funded by FCT (UID/AGR/04129/2020) and CITAB (Centre for the Research and Technology of Agro-Environmental and Biological Sciences), funded by FCT (UIDB/04033/2020), and (4) the project Ferticycle: New bio-based fertilisers from organic waste upcycling – MSCA-ITN- 2019-860127, funded by the EU H2020 Marie Skłodowska-Curie actions European Training Network (ETN). This document reflects only the authors’ view, and the Union is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fangueiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fangueiro, D., Merino, P., Pantelopoulos, A., Pereira, J.L.S., Amon, B., Chadwick, D.R. (2023). The Implications of Animal Manure Management on Ammonia and Greenhouse Gas Emissions. In: Bartzanas, T. (eds) Technology for Environmentally Friendly Livestock Production. Smart Animal Production. Springer, Cham. https://doi.org/10.1007/978-3-031-19730-7_5

Download citation

Publish with us

Policies and ethics