Skip to main content

Abstract

One of the main applications of recommender systems is the search and decision making in spatial situations. There is an extensive range of applied problems when events, phenomena and processes of the real world seriously affect decisions, and this requires a rather complex spatial analysis. The complexity arises from the uncertainty of the problem statement and the huge variety of ambiguously estimated solutions. An analyst user when trying to solve a problem, apply geoinformation service in order to extract the most useful information. The implementation of such a mechanism in a mobile device is problematic due to the need to process large amounts of cartographic information. This requires large computing and communication resources. In addition, costs are rising for cartographic visualization, which is essential in spatial analysis. The inclusion of intelligent recommender systems in the spatial analysis circuit will significantly reduce the severity of these problems. This paper discusses the principles of organizing an intelligent recommender system, which is used in the process of finding solutions for hard-to-formalize problems that require spatial analysis. A mobile intelligent recommender system for spatial analysis model is proposed. The peculiarity of the model lies in the implementation of the contextual dependence of recommendations on the dynamics of the process of spatial analysis. Level, trend and rhythm indicators have been introduced for context chains. Using these indicators, it is possible to achieve the semantic integrity of the recommendations. The concept of knowledge representation for the analysis workspace and the search for an adequate context is proposed. The features of logical inference using indefinitely described spatial situations are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cimburova, Z., Berghauser, P.M.: Location matters. A systematic review of spatial contextual factors mediating ecosystem services of urban trees. Ecosyst. Serv. 50, 101296 (2021)

    Article  Google Scholar 

  2. Kondratenko, Y., et al.: Inspection mobile robot’s control system with remote IoT-based data transmission. J. Mob. Multimedia 17(4), 499–522 (2021). https://doi.org/10.13052/jmm1550-4646.1742

    Article  Google Scholar 

  3. Kondratenko, Y., et al.: Advanced control systems: theory and applications. In: Proceedings of the Series in Automation, Control and Robotics. River Publishers, Gistrup, Delft (2021)

    Google Scholar 

  4. Singh, P.K., et al.: Recommender systems: an overview, research trends, and future directions. Int. J. Bus. Syst. Res. 15(1), 14–52 (2021)

    Article  Google Scholar 

  5. Smith, M.J., Goodchild, M.F., Longley, P.A.: Geospatial Analysis: A Comprehensive Guide to Principles Techniques and Software Tools, 6th edn. Troubador Publishing Ltd (2018)

    Google Scholar 

  6. Tamiminia, H., et al.: Google earth engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogrammetry and Remote Sens. 164, 152–170 (2020). https://doi.org/10.1016/j.isprsjprs.2020.04.001

    Article  Google Scholar 

  7. Stanton, M., Roelich, K.: Decision making under deep uncertainties: a review of the applicability of methods in practice. Technol. Forecast. Soc. Chang. 171, 120939 (2021). https://doi.org/10.1016/j.techfore.2021.120939

    Article  Google Scholar 

  8. Wang, H., et al.: Hierarchical visualization of geographical areal data with spatial attribute association. Visual Informatics 5(3), 82–91 (2021). https://doi.org/10.1016/j.visinf.2021.09.001

    Article  Google Scholar 

  9. Goodchild, M.F.: Spatial thinking and the GIS user interface. Procedia. Soc. Behav. Sci. 21, 3–9 (2011). https://doi.org/10.1016/j.sbspro.2011.07.002

    Article  Google Scholar 

  10. Islam, M.N., Bouwman, H.: Towards user–intuitive web interface sign design and evaluation: a semiotic framework. Int. J. Hum Comput Stud. 86, 121–137 (2016). https://doi.org/10.1016/j.ijhcs.2015.10.003

    Article  Google Scholar 

  11. Rodríguez-Hernández, M., Ilarri, S.: AI-based mobile context-aware recommender systems from an information management perspective: progress and directions. Knowl.-Based Syst. 215, 106740 (2021). https://doi.org/10.1016/j.knosys.2021.106740

    Article  Google Scholar 

  12. Raza, S., Ding, C.: Progress in context-aware recommender systems — an overview. Comput. Sci. Rev. 31, 84–97 (2019). https://doi.org/10.1016/j.cosrev.2019.01.001

    Article  MathSciNet  Google Scholar 

  13. Aguilar, J., Jerez, M., Rodríguez, T.: CAMeOnto: context awareness meta ontology modelling. Appl. Comput. Inf. 14, 202–213 (2018)

    Google Scholar 

  14. Sharma, S., Shakya, H.K., Marriboyina, V.: A location based novel recommender framework of user interest through data categorization. Mater. Today 47(19), 7155–7161 (2021). https://doi.org/10.1016/j.matpr.2021.06.325

    Article  Google Scholar 

  15. Choi, M.J., Torralba, A., Willsky, A.S.: Context models and out-of-context objects. Pattern Recogn. Lett. 33(7), 853–862 (2012). https://doi.org/10.1016/j.patrec.2011.12.004

    Article  Google Scholar 

  16. Solskinnsbakk, G., Gulla, J.A.: Combining ontological profiles with context in information retrieval. Data Knowl. Eng. 69(3), 251–260 (2010). https://doi.org/10.1016/j.datak.2009.10.006

    Article  Google Scholar 

  17. Lv, X., El-Gohary, N.M.: Enhanced context-based document relevance assessment and ranking for improved information retrieval to support environmental decision making. Adv. Eng. Inform. 30(4), 737–750 (2016). https://doi.org/10.1016/j.aei.2016.08.004

    Article  Google Scholar 

  18. Unger, M., Bar, A., Shapira, B., Rokach, L.: Towards latent context-aware recommendation systems. Knowl.-Based Syst. 104, 165–178 (2016). https://doi.org/10.1016/j.knosys.2016.04.020

    Article  Google Scholar 

  19. Xia, B., et al.: VRer: context-based venue recommendation using embedded space ranking SVM in location-based social network. Expert Syst. Appl. 83, 18–29 (2017). https://doi.org/10.1016/j.eswa.2017.04.020

    Article  Google Scholar 

  20. Cioara, T., et al.: A self-adapting algorithm for context aware systems. In: Proceedings of the Roedunet International Conference (RoEduNet), pp. 374–379 (2010)

    Google Scholar 

  21. Kwon, O., Yoo, K., Suh, E.: UbiDSS: a proactive intelligent decision support system as an expert system deploying ubiquitous computing technologies. Expert Syst. Appl. 28(1), 149–161 (2005). https://doi.org/10.1016/j.eswa.2004.08.007

    Article  Google Scholar 

  22. Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst. Appl. 97, 205–227 (2018). https://doi.org/10.1016/j.eswa.2017.12.020

    Article  Google Scholar 

  23. Belyakov, S., Bozhenyuk, A., Kacprzyk, J., Rozenberg, I.: Intelligent planning of spatial analysis process based on contexts. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 10–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_2

    Chapter  Google Scholar 

  24. Liang, F., et al.: Route recommendation based on temporal–spatial metric. Comput. Electr. Eng. 97, 107549 (2022). https://doi.org/10.1016/j.compeleceng.2021.107549

    Article  Google Scholar 

  25. Guo, Y., et al.: Machine learning based feature selection and knowledge reasoning for CBR system under big data. Pattern Recogn. 112, 107805 (2021). https://doi.org/10.1016/j.patcog.2020.107805

    Article  Google Scholar 

  26. Kacprzyk, J., Belyakov, S., Bozhenyuk, A., Rozenberg, I.: Knowledge representations for constructing chains of contexts in geographic information systems. Int. J. Comput. Intell. Syst. 14(1), 1388–1395 (2021). https://doi.org/10.2991/ijcis.d.210420.001

    Article  Google Scholar 

  27. Belyakov, S., Bozhenyuk, A., Knyazeva, M., Rozenberg, I.: Figurative series in spatial analysis of situations. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds.) INFUS 2021. LNNS, vol. 307, pp. 289–296. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85626-7_35

    Chapter  Google Scholar 

Download references

Acknowledgments

The research was funded by the Russian Science Foundation project No. 22-71-10121, https://rscf.ru/en/project/22-71-10121/ implemented by the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bozhenyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belyakov, S., Bozhenyuk, A., Dolgiy, I., Knyazeva, M. (2023). Intelligent Recommender System for Spatial Analysis. In: Kovalev, S., Sukhanov, A., Akperov, I., Ozdemir, S. (eds) Proceedings of the Sixth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’22). IITI 2022. Lecture Notes in Networks and Systems, vol 566. Springer, Cham. https://doi.org/10.1007/978-3-031-19620-1_9

Download citation

Publish with us

Policies and ethics