Skip to main content

Advanced Analytics on Complex Industrial Data

  • Chapter
  • First Online:
Data Science for Entrepreneurship

Abstract

Complex data requires advanced analytics methods. In both science and industry, with the ever-increasing amounts of rich and large datasets available, advanced data analytics capabilities are required. Depending on the task at hand, several different techniques and methods can be used to analyze complex data (e.g., multivariate time series, log data, multimodal sensor data). In this chapter, we introduce approaches and methods for advanced analytics on complex industrial data. In particular, we focus on three exemplary methods for modeling and analyzing complex data, i.e., analytics for fault diagnosis, graph signal processing, and pattern mining on networks and graphs. We introduce the general approaches and methods and discuss their implementation in detail for an extended context. From a data perspective, we cover both sequential, i.e., time series, and relational, i.e., graph and network data, also bridging between both by analyzing signals on graphs. Besides setting the stage for the important theoretical background and concepts, we outline, in particular, the perspective on industrial applications and provide specific examples of the application of the presented methods in real-world industrial contexts, i.e., using complex industrial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th International Conference on Very Large Data Bases (VLDB) (pp. 487–499). Morgan Kaufmann.

    Google Scholar 

  • Alsyouf, I. (2007). The role of maintenance in improving companies’ productivity and profitability. International Journal of Production Economics, 105(1), 70–78.

    Google Scholar 

  • Angelo Medeiros Fonini, P. (2019). A didactic introduction to graph signal processing techniques and applications. Instituto Alberto Luiz Coimbra.

    Google Scholar 

  • Arts, J. (2017). Maintenance modeling and optimization (Vol. 526). TU/e Eindhoven.

    Google Scholar 

  • Atzmueller, M. (2015). Subgroup discovery. WIREs DMKD, 5(1), 35–49.

    Google Scholar 

  • Atzmueller, M. (2016). Detecting community patterns capturing exceptional link trails. In Proceedings of the IEEE/ACM ASONAM. IEEE.

    Google Scholar 

  • Atzmueller, M. (2018). Declarative aspects in explicative data mining for computational sensemaking. In Proceedings of the International Conference on Declarative Programming (DECLARE). Springer.

    Google Scholar 

  • Atzmueller, M., Arnu, D., & Schmidt, A. (2017). Anomaly detection and structural analysis in industrial production environments. In Proceedings of the International Data Science Conference (IDSC 2017), Salzburg, Austria.

    Google Scholar 

  • Atzmueller, M., Bloemheuvel, S., & Kloepper, B. (2019a). A framework for human-centered exploration of complex event log graphs. In Proceedings of the International Conference on Discovery Science (DS 2019). Springer.

    Google Scholar 

  • Atzmueller, M., Doerfel, S., & Mitzlaff, F. (2016a). Description-oriented community detection using exhaustive subgroup discovery. Information Sciences, 329, 965–984.

    Google Scholar 

  • Atzmueller, M., & Kloepper, B. (2018). Mining attributed interaction networks on industrial event logs. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning. Springer.

    Google Scholar 

  • Atzmueller, M., Kloepper, B., Mawla, H. A., Jäschke, B., Hollender, M., Graube, M., Arnu, D., Schmidt, A., Heinze, S., Schorer, L., Kroll, A., Stumme, G., & Urbas, L. (2016b). Big data analytics for proactive industrial decision support. ATP Edition, 58(9).

    Google Scholar 

  • Atzmueller, M., & Lemmerich, F. (2009). Fast subgroup discovery for continuous target concepts. In Proceedings of the 18th International Symposium on Methodologies for Intelligent Systems (ISMIS 2009) (LNCS) (Vol. 5722, pp. 1–15). Springer.

    Google Scholar 

  • Atzmueller, M., & Lemmerich, F. (2012). VIKAMINE—Open-source subgroup discovery, pattern mining, and analytics. In Proceedings of the ECML/PKDD. Springer.

    Google Scholar 

  • Atzmueller, M., Puppe, F., & Buscher, H. P. (2005). Profiling examiners using intelligent subgroup mining. In Proceedings of the IDAMAP, Aberdeen, Scotland (pp. 46–51).

    Google Scholar 

  • Atzmueller, M., Soldano, H., Santini, G., & Bouthinon, D. (2019b). MinerLSD: Efficient mining of local patterns on attributed networks. Applied Network Science, 4(43).

    Google Scholar 

  • Atzmueller, M., & Sternberg, E. (2017). Mixed-initiative feature engineering using knowledge graphs. In Proceedings of the 9th International Conference on Knowledge Capture (K-CAP). ACM Press.

    Google Scholar 

  • Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Google Scholar 

  • Bloemheuvel, S., Van den Hoogen, J., & Atzmueller, M. (2020). Graph signal processing on complex networks for structural health monitoring. In Proceedings of the Complex Networks. Springer.

    Google Scholar 

  • Case School of Engineering. (n.d.). CWRU dataset; Case Western Reserve University bearing data center. Retrieved from https://csegroups.case.edu/bearingdatacenter/home

  • Chow, M., Mangum, P. M., & Yee, S. O. (1991). A neural network approach to real-time condition monitoring of induction motors. IEEE Transactions on Industrial Electronics, 38(6), 448–453.

    Google Scholar 

  • Cococcioni, M., Lazzerini, B., & Volpi, S. L. (2013). Robust diagnosis of rolling element bearings based on classification techniques. IEEE Transactions on Industrial Informatics, 9(4), 2256–2263.

    Google Scholar 

  • Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery: An overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 1–34). AAAI Press.

    Google Scholar 

  • Folmer, J., Kirchen, I., Trunzer, E., Vogel-Heuser, B., Pötter, T., Graube, M., Heinze, S., Urbas, L., Atzmueller, M., & Arnu, D. (2017). Big and smart data—Challenges in the process industries. ATP Edition (pp. 1–2).

    Google Scholar 

  • Gebhardt, J., Froese, T., Krüger, A., Appel, J., Benner, R., Hammer, M., Altermann, A., Hochrein, T., Kugler, C., Jatzkowski, P., Gloy, Y. S., Saggiomo, M., Roth, R., Elixmann, I., Tapken, H., Weber, W., Atzmueller, M., Garcke, J., Pielmeier, J., Rosen, R., & Tercan, H. (2016). Status report: Chances with big data—Best practice. Tech. Rep. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik.

    Google Scholar 

  • Group, M. R. W., et al. (1985). Report of large motor reliability survey of industrial and commercial installations, part I. IEEE Transactions on Industry Applications, 1(4), 865–872.

    Google Scholar 

  • Hajnayeb, A., Ghasemloonia, A., Khadem, S., & Moradi, M. (2011). Application and comparison of an ANN-based feature selection method and the genetic algorithm in gear-box fault diagnosis. Expert Systems with Applications, 38(8), 10205–10209.

    Google Scholar 

  • Hoang, D. T., & Kang, H. J. (2019). Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognitive Systems Research, 53, 42–50.

    Google Scholar 

  • Huang, J., Hu, X., & Yang, F. (2011). Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker. Measurement, 44(6), 1018–1027.

    Google Scholar 

  • Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–1510.

    Google Scholar 

  • Jin, N., Flach, P., Wilcox, T., Sellman, R., Thumim, J., & Knobbe, A. (2014). Subgroup discovery in smart electricity meter data. IEEE Transactions on Industrial Informatics, 10(2), 1327–1336.

    Google Scholar 

  • Jin, X., Zhao, M., Chow, T. W., & Pecht, M. (2013). Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Transactions on Industrial Electronics, 61(5), 2441–2451.

    Google Scholar 

  • Jing, L., Zhao, M., Li, P., & Xu, X. (2017). A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement, 111, 1–10.

    Google Scholar 

  • Klösgen, W. (1996). Explora: A multipattern and multistrategy discovery assistant. In Advances in knowledge discovery and data mining (pp. 249–271). AAAI Press.

    Google Scholar 

  • Knobbe, A. J., Cremilleux, B., Fürnkranz, J., & Scholz, M. (2008). From local patterns to global models: The LeGo approach to data mining. In From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo-08) (pp. 1–16).

    Google Scholar 

  • Konar, P., & Chattopadhyay, P. (2011). Bearing fault detection of induction motor using wavelet and support vector machines (SVMS). Applied Soft Computing, 11(6), 4203–4211.

    Google Scholar 

  • Lavrac, N. (2005). Subgroup discovery techniques and applications. In T. B. Ho, D. W. Cheung, & H. Liu (Eds.), Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (LNAI) (Vol. 3518). Springer.

    Google Scholar 

  • Lei, Y., Jia, F., Lin, J., Xing, S., & Ding, S. X. (2016). An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on Industrial Electronics, 63(5), 3137–3147.

    Google Scholar 

  • Lemmerich, F., Becker, M., & Atzmueller, M. (2012). Generic pattern trees for exhaustive exceptional model mining. In Proceedings of the ECML/PKDD. Springer.

    Google Scholar 

  • Liu, H., Zhou, J., Zheng, Y., Jiang, W., & Zhang, Y. (2018a). Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders. ISA Transactions, 77, 167–178.

    Google Scholar 

  • Liu, R., Yang, B., Zio, E., & Chen, X. (2018b). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.

    Google Scholar 

  • Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10.

    Google Scholar 

  • Malhi, A., & Gao, R. X. (2004). PCA-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement, 53(6), 1517–1525.

    Google Scholar 

  • Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148.

    Google Scholar 

  • Meng, Z., Zhan, X., Li, J., & Pan, Z. (2018). An enhancement denoising autoencoder for rolling bearing fault diagnosis. Measurement, 130, 448–454.

    Google Scholar 

  • Miao, S., Veerman, R., Koenders, E., & Knobbe, A. (2013). Modal analysis of a concrete highway bridge: Structural calculations and vibration-based results. In Proceedings of the Conference on Structural Health Monitoring of Intelligent Infrastructure, Hongkong.

    Google Scholar 

  • Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.

    Google Scholar 

  • Morik, K. (2002). Detecting interesting instances. In D. Hand, N. Adams, & R. Bolton (Eds.), Pattern detection and discovery (LNCS) (Vol. 2447, pp. 13–23). Springer.

    Google Scholar 

  • Morik, K., Boulicaut, J., & Siebes, A. (Eds.). (2005). Local Pattern Detection, International Seminar, Dagstuhl Castle, Germany, April 12–16, 2004, Revised Selected Papers (LNCS) (Vol. 3539). Springer.

    Google Scholar 

  • Natu, M., & Palshikar, G. (2014). Interesting subset discovery and its application on service processes. In K. Yada (Ed.), Data mining for service (Studies in big data) (Vol. 3, pp. 245–269). Springer.

    Google Scholar 

  • Pandya, D., Upadhyay, S., & Harsha, S. P. (2013). Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Systems with Applications, 40(10), 4137–4145.

    Google Scholar 

  • Santos, P., Villa, L. F., Reñones, A., Bustillo, A., & Maudes, J. (2015). An SVM-based solution for fault detection in wind turbines. Sensors, 15(3), 5627–5648.

    Google Scholar 

  • Scarf, P. (2007). A framework for condition monitoring and condition based maintenance. Quality Technology & Quantitative Management, 4(2), 301–312.

    Google Scholar 

  • Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5, 269–287.

    Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

    Google Scholar 

  • Soldano, H., Santini, G., & Bouthinon, D. (2015). Local knowledge discovery in attributed graphs. In Proceedings of the ICTAI (pp. 250–257). IEEE.

    Google Scholar 

  • Soldano, H., Santini, G., Bouthinon, D., & Lazega, E. (2017). Hub-authority cores and attributed directed network mining. In Proceedings of the ICTAI (pp. 1120–1127). IEEE.

    Google Scholar 

  • Stankovic, L., Mandic, D., Dakovic, M., Brajovic, M., Scalzo, B., & Constantinides, T. (2019a). Graph signal processing—Part I: Graphs, graph spectra, and spectral clustering. arXiv preprint arXiv:1907.03467.

    Google Scholar 

  • Stankovic, L., Mandic, D. P., Dakovic, M., Kisil, I., Sejdic, E., & Constantinides, A. G. (2019b). Understanding the basis of graph signal processing via an intuitive example-driven approach [lecture notes]. IEEE Signal Processing Magazine, 36(6), 133–145.

    Google Scholar 

  • Stefan Bloemheuvel, B. K., & Atzmueller, M. (2019). Graph summarization for computational sensemaking on complex industrial event logs. In Proceedings of the Workshop on Methods for Interpretation of Industrial Event Logs, International Conference on Business Process Management, Vienna.

    Google Scholar 

  • Sternberg, E., & Atzmueller, M. (2018). Knowledge-based mining of exceptional patterns in logistics data: Approaches and experiences in an industry 4.0 context. In Proceedings of the 24th International Symposium on Methodologies for Intelligent Systems (ISMIS) (LNCS). Springer.

    Google Scholar 

  • Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., & Chen, X. (2016). A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement, 89, 171–178.

    Google Scholar 

  • van den Hoogen, J., Bloemheuvel, S., & Atzmueller, M. (2020). An improved wide-kernel CNN for classifying multivariate signals in fault diagnosis. In ICDMW. IEEE.

    Google Scholar 

  • Wang, Z., Zhang, Q., Xiong, J., Xiao, M., Sun, G., & He, J. (2017). Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests. IEEE Sensors Journal, 17(17), 5581–5588.

    Google Scholar 

  • Wortmann, F., & Flüchter, K. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224.

    Google Scholar 

  • Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of the First European Symposium on Principles of Data Mining and Knowledge Discovery (pp. 78–87). Springer.

    Google Scholar 

  • Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107.

    Google Scholar 

  • Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962.

    Google Scholar 

  • Yin, S., Li, X., Gao, H., & Kaynak, O. (2014). Data-based techniques focused on modern industry: An overview. IEEE Transactions on Industrial Electronics, 62(1), 657–667.

    Google Scholar 

  • You, D., Gao, X., & Katayama, S. (2014). WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Transactions on Industrial Electronics, 62(1), 628–636.

    Google Scholar 

  • Zhang, A., Li, S., Cui, Y., Yang, W., Dong, R., & Hu, J. (2019). Limited data rolling bearing fault diagnosis with few-shot learning. IEEE Access, 7, 110895–110904.

    Google Scholar 

  • Zhang, W., Peng, G., Li, C., Chen, Y., & Zhang, Z. (2017). A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors, 17(2), 425.

    Google Scholar 

  • Zhang, X., Xu, R., Kwan, C., Liang, S. Y., Xie, Q., & Haynes, L. (2005). An integrated approach to bearing fault diagnostics and prognostics. In Proceedings of the 2005, American Control Conference (pp. 2750–2755). IEEE.

    Google Scholar 

  • Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237.

    Google Scholar 

  • Zhou, W., Habetler, T. G., & Harley, R. G. (2007). Bearing condition monitoring methods for electric machines: A general review. 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (pp. 3–6). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurgen van den Hoogen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van den Hoogen, J., Bloemheuvel, S., Atzmueller, M. (2023). Advanced Analytics on Complex Industrial Data. In: Liebregts, W., van den Heuvel, WJ., van den Born, A. (eds) Data Science for Entrepreneurship. Classroom Companion: Business. Springer, Cham. https://doi.org/10.1007/978-3-031-19554-9_9

Download citation

Publish with us

Policies and ethics