Skip to main content

RBF Neural Network Based on FT-Windows for Auto-Tunning PID Controller

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2022)

Abstract

The weighted function windows are used in many areas as signal analysis and application systems. In addition, the weighted functions are broad uses in filter design where different windows allow to choose different filter characteristics. The most common individual window types are rectangular, Hanning, Flat Top, and Keiser-Bessel. This paper presents the Flat-Top Windows (FTW) applied to control systems where the FTW are used as activation functions on a radial basis neural network (RBF). Contrary to the "traditional" FT weighted function windows, where time windows limit the information, this paper proposes new ones that, including new parameters, allow translation and dilation of the window. Additionally, these new parameters are updated using a gradient descent algorithm. The new FTW is applied to the Quanser helicopter control where the RBF neural network is used for: a) the input-output identification of the system and b) auto-tuning PID controllers. Numerical simulation results are presented to show the system’s performance under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let the vectors \(a,b,c\in \mathbb {R}^{n\times 1}\) where \(c_x = a_x\cdot b_x\) with \(x\in \lbrace 1,2,...,n\rbrace \) [13].

References

  1. Salvatore, L., Trotta, A.: Flat-top windows for PWM waveform processing via DFT. IEE Proc. B: Electr. Power Appl. 135(6), 346–361 (1988)

    Google Scholar 

  2. Cortés, C.A., Mombello, E., Dib, R., Ratta, G.: A new class of flat-top windows for exposure assessment un magnetic field measurements. Signal Process., 2151–2164 (2007)

    Google Scholar 

  3. Reljin, I.S., Reljin, B.D., Papic, V.: Extremely flat-top windows for harmonic analysis. IEEE Trans. Instrum. Measur. 56(3), 1025–1041 (2007)

    Article  Google Scholar 

  4. Nguyen, A., Pham, K., Ngo, D., Ngo, T., Pham, L.: An analysis of state-of-the-art activation functions for supervised deep neural network. ICSSE, 215–220 (2021). https://doi.org/10.1109/ICSSE52999.2021.9538437

  5. Zhao, Z., He, W., Yang, J., Li, Z.: Adaptive neural network control of an uncertain 2-DOF helicopter system with input backlash and output constraints. Neural Comput. Appl. (2022). https://doi.org/10.1007/s00521-022-07463-3

  6. Zou, T., et al.: Adaptive neural network sliding mode control of a nonlinear two-degrees-of-freedom helicopter system. Asian J. Control, 199–205 (2022)

    Google Scholar 

  7. Yumuk, E., Copot, C., Ionescu, C.M.: A robust auto-tuning PID controller design based on S-shaped time domain response, vol. 1, pp. 525–530 (2022)

    Google Scholar 

  8. Kamenko, I., Čongradac, V., Kulić, F.: A novel fuzzy logic scheme for PID controller auto-tuning. Automatika 63(2), 365–377 (2022)

    Article  Google Scholar 

  9. Ramos-Velasco, L.E., Domínguez-Ramírez, O., Parra-Vega, V.: Wavenet fuzzy PID controller for nonlinear MIMO systems: experimental validation on a high-end haptic robotic interface. Appl. Soft Comput., 199–205 (2016)

    Google Scholar 

  10. Carrillo-Santos, C.A., Seck-Tuoh-Mora, J.C., Hernández-Romero, N., Ramos-Velasco, L.E.: WaveNet identification of dynamical systems by a modified PSO algorithm. Eng. Appl. Artif. Intell. 79, 1–92 (2018)

    Article  Google Scholar 

  11. Inc., Q.: User manual 2 DOF helicopter experiment, set up and configuration. Markham, Ontario (2012)

    Google Scholar 

  12. Haykin, S.: Neural Networks, a Comprehensive Foundation. Pearson Eduaction Inc, EUA (1999)

    MATH  Google Scholar 

  13. Deisenroth, M., Faisal, A., Ong, C.: Mathematics for Machine Learning. Cambrige University Press, USA (2020)

    Book  Google Scholar 

  14. Díaz-López, F.A., Velasco, L.E.R., Ramírez, O.A.D., Parra-Vega, V.: Multiresolution WaveNet PID control for global regulation of robots, 1–6 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Ramos Velasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castro, O.F.G. et al. (2022). RBF Neural Network Based on FT-Windows for Auto-Tunning PID Controller. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds) Advances in Computational Intelligence. MICAI 2022. Lecture Notes in Computer Science(), vol 13612. Springer, Cham. https://doi.org/10.1007/978-3-031-19493-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19493-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19492-4

  • Online ISBN: 978-3-031-19493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics