Skip to main content

Selection and Maintenance of Cultured Cells

  • Chapter
  • First Online:
Animal Cell Culture: Principles and Practice
  • 1011 Accesses

Abstract

In the exploration of basic scientific and translational research concerns, cell culture is a very versatile technique. The uniformity of cell lines and the related reproducibility of information obtained are benefits of using them in scientific study. Because the readout of the desired assay impacts the selection and maintenance of a specific cell line or specific cell culture conditions, this chapter will provide a generalised overview of common mammalian cell culture components and properties that contribute to a suitable cell culture microenvironment. As a result, this chapter describes numerous types of cell culturing cells that are essential for cell proliferation and can be easily applied to a variety of experimental methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekanmbi, A. O., & Falodun, O. I. (2016). Antibiogram of Escherichia coli and Pseudomonas strains isolated from wastewater generated by an Abattoir as it journeys into a receiving river. Advances in Microbiology, 6, 303–309.

    Article  Google Scholar 

  • Alberts, B., Johnson, A, & Lewis J. (2002). Isolating cells and growing them in culture. In Molecular biology of the cell. W. W. Norton & Company.

    Google Scholar 

  • Baust, J. M., Buehring, G. C., Campbell, L., Elmore, E., Harbell, J. W., & Nims, R. W. (2017). Best practices in cell culture: An overview. In vitro cellular & developmental biology Animal (pp. 669–672). Tissue Culture Association.

    Google Scholar 

  • Bayreuther, K., Francz, P. I., Gogol, J., Hapke, C., Maier, M., & Meinrath, H. G. (1991). Differentiation of primary and secondary fibroblasts in cell culture systems. Mutation Research, 256, 233–242.

    Article  CAS  Google Scholar 

  • Berdichevsky, F., Gilbert, C., Shearer, M., & Taylor-Papadimitriou, J. (1992). Collagen-induced rapid morphogenesis of human mammary epithelial cells: The role of the alpha 2 beta 1 integrin. Journal of Cell Science, 102, 199207.

    Article  Google Scholar 

  • Bhatia, S., Naved, T., & Sardana, S. (2019). Introduction to pharmaceutical biotechnology. Characterization of cultured cells. IOP Publishing.

    Google Scholar 

  • Biscop, E., Lin, A., Boxem, W. V., Loenhout, J. V., Backer, J. D., & Deben, C. (2019). Influence of cell type and culture medium on determining cancer selectivity of cold atmospheric plasma treatment. Cancers, 11, 1287.

    Article  CAS  Google Scholar 

  • Borg, T. K., & Caulfield, J. B. (1980). Morphology of connective tissue in skeletal muscle. Tissue and Cell, 12, 197–207.

    Article  CAS  Google Scholar 

  • Boyce, S. T., & Ham, R. G. (1983). Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial cultures. The Journal of Investigative Dermatology., 81, 33s.

    Article  CAS  Google Scholar 

  • Browne, S. M., & Al-Rubeai, M. (2007). Selection methods for high-producing mammalian cell lines. Trends in Biotechnology, 25, 425–432.

    Article  CAS  Google Scholar 

  • Butler, M., & Christie, A. (1994). Adaptation of mammalian cells to non-ammoniagenic media. Cytotechnology, 15, 87–94.

    Article  CAS  Google Scholar 

  • Carroll, S., & Al-Rubeai, M. (2004). The selection of high-producing cell lines using flow cytometry and cell sorting. In Expert opinion on biological therapy (pp. 1821–1829). Ashley Publications Ltd.

    Google Scholar 

  • Courtot, A.-M., Magniez, A., Oudrhiri, N., Féraud, O., Bacci, J., Gobbo, E., et al. (2014). Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming. Biores Open Access, 3, 206–216.

    Article  CAS  Google Scholar 

  • Czyz, J., Wiese, C., Rolletschek, A., Blyszczuk, P., Cross, M., & Wobus, A. M. (2003). Potential of embryonic and adult stem cells in vitro. Biological Chemistry, 384, 1391–1409.

    Article  CAS  Google Scholar 

  • Dezengotita, V. M., Kimura, R., & Miller, W. M. (1998). Effects of CO2 and osmolality on hybridoma cells: growth, metabolism and monoclonal antibody production. Cytotechnology, 28, 213–227.

    Article  CAS  Google Scholar 

  • Didion, J. P., Buus, R. J., Naghashfar, Z., Threadgill, D. W., Morse, H. C., 3rd, & de Villena, F. P. (2014). SNP array profiling of mouse cell lines identifies their strains of origin and reveals cross-contamination and widespread aneuploidy. BMC Genomics, 15, 1.

    Article  Google Scholar 

  • Eagle, H. (1955). Nutrition needs of mammalian cells in tissue culture. Science, 122, 501–514.

    Article  CAS  Google Scholar 

  • Eagle, H. (1973). The effect of environmental pH on the growth of normal and malignant cells. Journal of Cellular Physiology, 82, 1–8.

    Article  CAS  Google Scholar 

  • Fennell, D. A., & Jablons, D. M. (2018). Chapter 13 – Stem cells and lung cancer: In vitro and in vivo studies. In H. I. Pass, D. Ball, & G. V. Scagliotti (Eds.), IASLC Thoracic Oncology. Elsevier.

    Google Scholar 

  • Fischer, L. (1978). The concept of the subculture of the aging reconsidered.

    Google Scholar 

  • Fischer, A., Astrup, T., et al. (1948). Growth of animal tissue cells in artificial media. In Proceedings of the society for experimental biology and medicine society for experimental biology and medicine (pp. 40–46). Blackwell Science.

    Google Scholar 

  • Fogh, J., Wright, W. C., & Loveless, J. D. (1977). Absence of HeLa cell contamination in 169 cell lines derived from human tumors. Journal of the National Cancer Institute, 58, 209–214.

    Article  CAS  Google Scholar 

  • Fonseca, J., Moradi, F., Valente, A. J. F., & Stuart, J. A. (2018). Oxygen and glucose levels in cell culture media determine Resveratrol’s effects on growth, hydrogen peroxide production, and mitochondrial dynamics. Antioxidants, 7, 157.

    Article  Google Scholar 

  • Fox, I. H., & Kelley, W. N. (1978). The role of adenosine and 2′-Deoxyadenosine in mammalian cells. Annual Review of Biochemistry, 47, 655–686.

    Article  CAS  Google Scholar 

  • Frahm, B., Blank, H. C., Cornand, P., Oelssner, W., Guth, U., Lane, P., et al. (2002). Determination of dissolved CO(2) concentration and CO(2) production rate of mammalian cell suspension culture based on off-gas measurement. Journal of Biotechnology, 99, 133–148.

    Article  CAS  Google Scholar 

  • Franze, K., & Guck, J. (2010). The biophysics of neuronal growth. Reports on Progress in Physics, 73, 094601.

    Article  Google Scholar 

  • Freshney, R. (2006). Basic principles of cell culturs (pp. 1–22). Wiley.

    Google Scholar 

  • Freshney, R. I. (2010). Culture of animal cells: A manual of basic technique and specialized applications. Wiley.

    Book  Google Scholar 

  • Gallagher, C., Kelly, P. S. (2017). Selection of high-producing clones using FACS for CHO cell line development. In Methods in molecular biology (pp. 143–152). Academic.

    Google Scholar 

  • Gaush, C. R., Hard, W. L., & Smith, T. F. (1996). Characterization of an established line of canine kidney cells (MDCK). In Proceedings of the society for experimental biology and medicine society for experimental biology and medicine (931–935). Blackwell Science.

    Google Scholar 

  • Gey, G. O., & Gey, M. K. (1936). The Maintenance of Human Normal Cells and Tumor Cells in Continuous Culture: I. Preliminary Report: Cultivation of Mesoblastic Tumors and Normal Tissue and Notes on Methods of Cultivation. The American Journal of Cancer, 27, 45.

    Article  Google Scholar 

  • Glovanella, B. C., Stehlin, J. S., Santamaria, C., Yim, S. O., Morgan, A. C., Williams, L. J., Jr., et al. (1976). Human neoplastic and normal cells in tissue culture. I. Cell lines derived from malignant melanomas and normal melanocytes. Journal of the National Cancer Institute, 56, 1131.

    Article  CAS  Google Scholar 

  • Green, H., & Kehinde, O. (1974). Sublines of mouse 3T3 cells that accumulate lipid. Cell, 1, 113–116.

    Article  CAS  Google Scholar 

  • Ham, R. G. (1965). Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proceedings of the National Academy of Sciences of the United States of America, 53, 288–293.

    Article  CAS  Google Scholar 

  • Hanks, J. H., & Wallace, R. E. (1949). Relation of oxygen and temperature in the preservation of tissues by refrigeration. In Proceedings of the society for Experimental Biology and Medicine Society (pp. 196–200). Blackwell Science.

    Google Scholar 

  • Hayashi, I., & Sato, G. H. (1976). Replacement of serum by hormones permits growth of cells in a defined medium. Nature, 259, 132–134.

    Article  CAS  Google Scholar 

  • Hebert PD, Cywinska A, Ball SL, deWaard JR. (2003a) Biological identifications through DNA barcodes. Proceedings of the Biological Sciences 270, 313-321.

    Google Scholar 

  • Hebert, P. D., Ratnasingham, S., & deWaard, J. R. (2003b). Barcoding animal life: Cytochrome C oxidase subunit 1 divergences among closely related species. Proceedings of the Biological Sciences, 270, 96.

    Article  Google Scholar 

  • Jacobs, J. P., Jones, C. M., & Baille, J. P. (1970). Characteristics of a human diploid cell designated MRC-5. Nature, 227, 168–170.

    Article  CAS  Google Scholar 

  • Jokela, T, & Labarge, M. (2015). Culture of animal cells: A manual of basic technique and specialized applications. In Culture of cancer stem cells (pp. 583–587).

    Google Scholar 

  • Knowles, B. B., Howe, C. C., & Aden, D. P. (1980). Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science, 209, 497–499.

    Article  CAS  Google Scholar 

  • Kurashina, Y., et al. (2017). Efficient Subculture Process for Adherent Cells by Selective Collection Using Cultivation Substrate Vibration. IEEE Transactions on Bio-Medical Engineering, 64, 580–587.

    Google Scholar 

  • Lechner, J. F., McClendon, I. A., & LaVeck, M. A. (1983). Shamsuddin AM, Harris CC. Differential control by platelet factors of squamous differentiation in normal and malignant human bronchial epithelial cells. Cancer Research, 80, 5915–5921.

    Google Scholar 

  • Lee, J.-J., Kwon, J.-H., Park, Y. K., Kwon, O., & Yoon, T.-W. (1997). The effects of various hormones and growth factors on the growth of human insulin-producing cell line in serum-free medium. Experimental & Molecular Medicine, 29, 209–216.

    Article  CAS  Google Scholar 

  • Liang-Chu, M. M., Yu, M., Haverty, P. M., Koeman, J., Ziegle, J., Lee, M., et al. (2015). Human biosample authentication using the high-throughput, cost-effective SNPtrace(TM) system. PLoS One, 10.

    Google Scholar 

  • Liu, J., Han, X. M., Liang, L., Liu, Q. C., Xu, Y. H., Yang, C. M., et al. (2014). Establishment of a cell suspension culture system of endangered Aquilaria sinensis. CTA Pharmaceutica Sinica, 49, 1194–1199.

    Google Scholar 

  • Lynn, D. E. (2009). Chapter 39 – Cell culture. In Encyclopedia of insects (pp. 144–145). Academic.

    Google Scholar 

  • Mackenzie, C. G., Mackenzie, J. B., & Beck, P. (1961). The effect of pH on growth, protein synthesis, and lipid-rich particles of cultured mammalian cells. The Journal of Biophysical and Biochemical Cytology, 9, 141–156.

    Article  CAS  Google Scholar 

  • Maestroni, A. (2012). Cell morphology and function: The specificities of muscle cells. In L. Luzi (Ed.), Cellular physiology and metabolism of physical exercise (pp. 9–15). Springer.

    Google Scholar 

  • Malm, M., Saghaleyni, R., Lundqvist, M., Giudici, M., Chotteau, V., Field, R., et al. (2020). Evolution from adherent to suspension: Systems biology of HEK293 cell line development. Scientific Reports, 10.

    Google Scholar 

  • Masters, J. (n.d.). Animal cell culture. Oxford University Press.

    Google Scholar 

  • McCormick, C., & Freshney, R. I. (2000). Activity of growth factors in the IL-6 group in the differentiation of human lung adenocarcinoma. British Journal of Cancer, 82, 881–890.

    Article  CAS  Google Scholar 

  • McKeehan, W. L., Barnes, D., Reid, L., Stanbridge, E., Murakami, H., & Sato, G. H. (1990). Frontiers in mammalian cell culture. In vitro cellular & developmental biology. Journal of the Tissue Culture Association, 26, 9–23.

    CAS  Google Scholar 

  • Moran, E. T., Summers, J. D., & Pepper, W. F. (1967). Effect of non-protein nitrogen supplementation of low protein rations on laying hen performance with a note on essential amino acid requirements. Poultry Science, 46, 1134–1144.

    Article  Google Scholar 

  • NCBI Resource Coordinators. (2016). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 46, D8.

    Article  Google Scholar 

  • Nelson, L. J., et al. (2013). Profiling the impact of medium formulation on morphology and functionality of primary hepatocytes in vitro. Scientific Reports, 3, 2735.

    Article  Google Scholar 

  • Noorafshan, A., Motamedifar, M., & Karbalay-Doust, S. (2016). Estimation of the cultured cells’ volume and surface area: Application of stereological methods on vero cells infected by Rubella virus. Iranian Journal of Medical Sciences 37–43.

    Google Scholar 

  • Oyeleye, O., Ola, S. I., & Omitogun, O. G. (2016). Basics of animal cell culture: Foundation for modern science. Academic Journals, 11, 6–16.

    CAS  Google Scholar 

  • Passier, R., & Mummery, C. (2003). Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovascular Research, 58, 324–335.

    Article  CAS  Google Scholar 

  • Philippeos, C., Hughes, R. D., Dhawan, A., & Mitry, R. R. (2012). ntroduction to cell culture. In Methods in molecular biology (pp. 1–13). PMC.

    Google Scholar 

  • Pixley, S. K. R. (1985). Volume 1: Methods for preparation of media, supplements, and substrata for serum-free animal cell culture. Alan R. Liss, Inc.

    Google Scholar 

  • Pruckler, J. M., Pruckler, J. M., & Ades, E. W. (1995). Detection by polymerase chain reaction of all common Mycoplasma in a cell culture facility. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 63, 9–11.

    Article  CAS  Google Scholar 

  • Raff, M. C., Miller, R. H., & Noble, M. (1983). A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 303, 390–396.

    Article  CAS  Google Scholar 

  • Remotti, P. C., Löffler, H. J. M., & van Vloten-Doting, L. (1997). Selection of cell-lines and regeneration of plants resistant to fusaric acid from Gladiolus × grandiflorus cv. ‘Peter Pears’. Euphytica, 96, 237–245.

    Article  Google Scholar 

  • Resau, J. H., & Cottrell, J. R. (1989). Use of organ explant and cell culture in cancer research. In E. K. Weisburger (Ed.), Mechanisms of carcinogenesis (pp. 157–159). Springer.

    Google Scholar 

  • Ricardo, R., & Phelan, K. (2008). Trypsinizing and subculturing mammalian cells. Journal of Visualized Experiments, 16, e755.

    Google Scholar 

  • Rooney, S. A., Young, S. L., & Mendelson, C. R. (1994). Molecular and cellular processing of lung surfactant. FASEB Journal: Federation of American Societies for Experimental Biology, 8, 957–967.

    Article  CAS  Google Scholar 

  • Ryu, A. H., et al. (2017). Use antibiotics in cell culture with caution: genome-wide identification of antibiotic-induced changes in gene expression and regulation. Scientific Reports, 7, 1.

    Article  Google Scholar 

  • Schnellbaecher, A., Binder, D., Bellmaine, S., & Zimmer, A. (2019). Vitamins in cell culture media: Stability and stabilization strategies. Biotechnology and Bioengineering, 116, 1537–1555.

    Article  CAS  Google Scholar 

  • Segeritz, C.-P., & Vallier, L. (2017). Cell culture: Growing cells as model systems in vitro. Basic science methods for clinical researchers (pp. 151–172). Academic.

    Google Scholar 

  • Soule, H. D., Maloney, T. M., Wolman, S. R., Peterson, W. D., Jr., Brenz, R., McGrath, C. M., et al. (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Research, 50, 6075–6086.

    CAS  Google Scholar 

  • Tang, W., Kuehn, T. H., & Simcik, M. F. (2015). Effects of temperature, humidity and air flow on fungal growth rate on loaded ventilation filters. Journal of Occupational and Environmental Hygiene, 12, 525–537.

    Article  CAS  Google Scholar 

  • Taub, M., Saier, M. H. (1979). An established but differentiated kidney epithelial cell line (MDCK). In Methods in enzymology (Vol. 58, pp. 552–560). Academic.

    Google Scholar 

  • Thomson, A. A., Foster, B. A., & Cunha, G. R. (1997). Analysis of growth factor and receptor mRNA levels during development of the rat seminal vesicle and prostate. Development, 12, 42431–42439.

    Google Scholar 

  • Uysal, O., Sevimli, T., Sevimli, M., Gunes, S., & Eker, S. A. (2018). Chapter 17 – Cell and tissue culture: The base of biotechnology. In Omics technologies and bio-engineering. Academic.

    Google Scholar 

  • Vazin, T., & Freed, W. J. (2010). Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restorative Neurology and Neuroscience, 28, 589–603.

    Article  CAS  Google Scholar 

  • Verma, A., Verma, M., & Singh, A. (2020). Animal tissue culture principles and applications. Animal Biotechnology, 269–293.

    Google Scholar 

  • Werner, R. G., & Noé, W. (1993). Mammalian cell cultures. Part I: Characterization, morphology and metabolism. Arzneimittel-Forschung, 43, 1134–1139.

    CAS  Google Scholar 

  • Xiong, H.-R., & Yang, Z. (2012). Culture conditions and types of growth media for mammalian cells. Biomedical Tissue Culture.

    Google Scholar 

  • Yamada, K. M., & Geiger, B. (1997). Molecular interactions in cell adhesion complexes. Current Opinion in Cell Biology, 9, 76–85.

    Article  CAS  Google Scholar 

  • Yao, T., & Asayama, Y. (2017). Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology, 16, 99–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jindal, D., Singh, M. (2023). Selection and Maintenance of Cultured Cells. In: Animal Cell Culture: Principles and Practice. Techniques in Life Science and Biomedicine for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-031-19485-6_7

Download citation

Publish with us

Policies and ethics