Skip to main content

3D Cell Culture Techniques

  • Chapter
  • First Online:
Animal Cell Culture: Principles and Practice

Abstract

To better understand human physiology and its development and pathological conditions, in vitro cell culture models are recognised as effective research tools. So far, traditional 2D cell culture methods have been used extensively. However, unfortunately, it lacks the crucial architecture of native cells and tissues, failing complete information about biological processes in vivo. Therefore, three-dimensional (3D) cell culture had come into the limelight and emerged as an advanced culture system that fills the barrier between two-dimensional cell culture models and animal modeling. It mimics the characteristic features of in vivo environment of animal physiology like cellular heterogeneity, structure and functions of cells, which offers a novel perspective on the behaviour of stem cells, growth of tissues and organs and pathological conditions including cancers. The 3D cell culture models might help promote translational research in diseased models, drug discovery, tissue engineering and personalised medicine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afewerki, S., Sheikhi, A., Kannan, S., Ahadian, S., & Khademhosseini, A. (2019). Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioengineering & Translational Medicine, 4(1), 96–115.

    Article  CAS  Google Scholar 

  • Amann, A., Zwierzina, M., Gamerith, G., Bitsche, M., Huber, J. M., Vogel, G. F., Blumer, M., Koeck, S., Pechriggl, E. J., Kelm, J. M., Hilbe, W., & Zwierzina, H. (2014). Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells. PloS one, 9(3), e92511.

    Article  Google Scholar 

  • Barrila, J., Radtke, A. L., Crabbé, A., Sarker, S. F., Herbst-Kralovetz, M. M., Ott, C. M., & Nickerson, C. A. (2010). Organotypic 3D cell culture models: Using the rotating wall vessel to study host-pathogen interactions. Nature Reviews Microbiology, 8(11), 791–801.

    Article  CAS  Google Scholar 

  • Breslin, S., & O’Driscoll, L. (2013). Three-dimensional cell culture: The missing link in drug discovery. Drug Discovery Today, 18(5–6), 240–249.

    Article  CAS  Google Scholar 

  • Carletti, E., Motta, A., & Migliaresi, C. (2011). Scaffolds for tissue engineering and 3D cell culture. Methods in Molecular Biology (Clifton, N.J.), 695, 17–39.

    Article  CAS  Google Scholar 

  • Chaicharoenaudomrung, N., Kunhorm, P., & Noisa, P. (2019). Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World Journal of Stem Cells, 11(12), 1065–1083.

    Article  Google Scholar 

  • Chitcholtan, K., Asselin, E., Parent, S., Sykes, P. H., & Evans, J. J. (2013). Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Experimental Cell Research, 319(1), 75–87.

    Article  CAS  Google Scholar 

  • Corrò, C., Novellasdemunt, L., & Li, V. (2020). A brief history of organoids. American Journal of Physiology – Cell Physiology, 319(1), C151–C165.

    Article  Google Scholar 

  • Donnaloja, F., Jacchetti, E., Soncini, M., & Raimondi, M. T. (2020). Natural and synthetic polymers for bone scaffolds optimization. Polymers, 12(4), 905.

    Article  CAS  Google Scholar 

  • Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12(4), 207–218.

    Article  CAS  Google Scholar 

  • Freshney, I. R. (2015). Culture of animal cells (A manual of basic technique and specialized applications) (7th ed.). Wiley-Blackwell. ISBN: 9781118873373.

    Google Scholar 

  • Godoy, P., Hewitt, N. J., Albrecht, U., Andersen, M. E., Ansari, N., Bhattacharya, S., Bode, J. G., Bolleyn, J., Borner, C., Böttger, J., Braeuning, A., Budinsky, R. A., Burkhardt, B., Cameron, N. R., Camussi, G., Cho, C. S., Choi, Y. J., Craig Rowlands, J., Dahmen, U., Damm, G., & Hengstler, J. G. (2013). Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 87(8), 1315–1530.

    Article  CAS  Google Scholar 

  • Jensen, C., & Teng, Y. (2020). Is it time to start transitioning from 2D to 3D cell culture? Frontiers in Molecular Biosciences, 7, 33.

    Article  CAS  Google Scholar 

  • Justice, B. A., Badr, N. A., & Felder, R. A. (2009). 3D cell culture opens new dimensions in cell-based assays. Drug Discovery Today, 14(1–2), 102–107.

    Article  CAS  Google Scholar 

  • Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M., Teresiak, A., Filas, V., Ibbs, M., Bliźniak, R., Łuczewski, Ł., & Lamperska, K. (2018). 2D and 3D cell cultures – A comparison of different types of cancer cell cultures. Archives of Medical Science: AMS, 14(4), 910–919.

    Google Scholar 

  • Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M., & Nielsen, L. K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering, 83, 173–180.

    Article  CAS  Google Scholar 

  • Klimkiewicz, K., Weglarczyk, K., Collet, G., Paprocka, M., Guichard, A., Sarna, M., Jozkowicz, A., Dulak, J., Sarna, T., Grillon, C., & Kieda, C. (2017). A 3D model of tumour angiogenic microenvironment to monitor hypoxia effects on cell interactions and cancer stem cell selection. Cancer Letters, 396, 10–20.

    Article  CAS  Google Scholar 

  • Koban, R., Neumann, M., Daugs, A., Bloch, O., Nitsche, A., Langhammer, S., & Ellerbrok, H. (2018). A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells. Antiviral Research, 150, 20–29.

    Article  CAS  Google Scholar 

  • Koledova, Z. (2017). 3D cell culture: An introduction. Methods in Molecular Biology (Clifton, N.J.), 1612, 1–11. https://doi.org/10.1007/978-1-4939-7021-6_1

  • Lee, C. H., Singla, A., & Lee, Y. (2001). Biomedical applications of collagen. International Journal of Pharmaceutics, 221(1–2), 1–22.

    Article  CAS  Google Scholar 

  • Longati, P., Jia, X., Eimer, J., Wagman, A., Witt, M. R., Rehnmark, S., Verbeke, C., Toftgård, R., Löhr, M., & Heuchel, R. L. (2013). 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer, 13, 95.

    Article  CAS  Google Scholar 

  • Ma, J., Li, N., Wang, Y., Wang, L., Wei, W., Shen, L., Sun, Y., Jiao, Y., Chen, W., & Liu, J. (2018). Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device. Biomedical Microdevices, 20(3), 80.

    Article  Google Scholar 

  • Mazzocchi, A., Soker, S., & Skardal, A. (2019). 3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine applications. Applied Physics Reviews, 6(1), 011302.

    Article  Google Scholar 

  • Negri, S., Fila, C., Farinato, S., Bellomi, A., & Pagliaro, P. P. (2007). Tissue engineering: Chondrocyte culture on type 1 collagen support. Cytohistological and immunohistochemical study. Journal of Tissue Engineering and Regenerative Medicine, 1(2), 158–159.

    Article  CAS  Google Scholar 

  • Nörz, D., Mullins, C. S., Smit, D. J., Linnebacher, M., Hagel, G., Mirdogan, A., Siekiera, J., Ehm, P., Izbicki, J. R., Block, A., Thastrup, O., & Jücker, M. (2021). Combined targeting of AKT and mTOR synergistically inhibits formation of primary colorectal carcinoma tumouroids in vitro: A 3D tumour model for pre-therapeutic drug screening. Anticancer Research, 41(5), 2257–2275.

    Article  Google Scholar 

  • Pavlou, M., Shah, M., Gikas, P., Briggs, T., Roberts, S. J., & Cheema, U. (2019). Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model. Acta Biomaterialia, 96, 247–257.

    Article  CAS  Google Scholar 

  • Peela, N., Sam, F. S., Christenson, W., Truong, D., Watson, A. W., Mouneimne, G., Ros, R., & Nikkhah, M. (2016). A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials, 81, 72–83.

    Article  CAS  Google Scholar 

  • Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., & Paul Solomon, F. D. (2015). 3D cell culture systems: Advantages and applications. Journal of Cellular Physiology, 230(1), 16–26.

    Article  CAS  Google Scholar 

  • Rodrigues, M. T., Carvalho, P. P., Gomes, M. E., & Reis, R. L. (2015). Biomaterials in preclinical approaches for engineering skeletal tissues. In Translational Regenerative Medicine. Elsevier Inc.

    Google Scholar 

  • Rogina, A., Pušić, M., Štefan, L., Ivković, A., Urlić, I., Ivanković, M., & Ivanković, H. (2021). Characterization of chitosan-based scaffolds seeded with sheep nasal chondrocytes for cartilage tissue engineering. Annals of Biomedical Engineering, 49(6), 1572–1586.

    Article  Google Scholar 

  • Ryan, S. L., Baird, A. M., Vaz, G., Urquhart, A. J., Senge, M., Richard, D. J., O’Byrne, K. J., & Davies, A. M. (2016). Drug discovery approaches utilizing three-dimensional cell culture. Assay and Drug Development Technologies, 14(1), 19–28.

    Article  CAS  Google Scholar 

  • Sakalem, M. E., De Sibio, M. T., da Costa, F., & de Oliveira, M. (2021). Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnology Journal, 16(5), e2000463.

    Article  Google Scholar 

  • Timmins, N. E., & Nielsen, L. K. (2007). Generation of multicellular tumor spheroids by the hanging-drop method. Methods in Molecular Medicine, 140, 141–151.

    Article  CAS  Google Scholar 

  • van Duinen, V., Trietsch, S. J., Joore, J., Vulto, P., & Hankemeier, T. (2015). Microfluidic 3D cell culture: From tools to tissue models. Current Opinion in Biotechnology, 35, 118–126.

    Article  Google Scholar 

  • Wang, J., Sun, Q., Wei, Y., Hao, M., Tan, W. S., & Cai, H. (2021). Sustained release of epigallocatechin-3-gallate from chitosan-based scaffolds to promote osteogenesis of mesenchymal stem cells. International Journal of Biological Macromolecules, 176, 96–105.

    Article  CAS  Google Scholar 

  • Wu, C. G., Chiovaro, F., Curioni-Fontecedro, A., Casanova, R., & Soltermann, A. (2020). In vitro cell culture of patient derived malignant pleural and peritoneal effusions for personalised drug screening. Journal of Translational Medicine, 18(1), 163.

    Article  CAS  Google Scholar 

  • Xu, K., Wang, Z., Copland, J. A., Chakrabarti, R., & Florczyk, S. J. (2020). 3D porous chitosan-chondroitin sulfate scaffolds promote epithelial to mesenchymal transition in prostate cancer cells. Biomaterials, 254, 120126.

    Article  CAS  Google Scholar 

  • Yamada, K. M., & Cukierman, E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell, 130(4), 601–610.

    Article  CAS  Google Scholar 

  • Yamaguchi, Y., Deng, D., Sato, Y., Hou, Y. T., Watanabe, R., Sasaki, K., Kawabe, M., Hirano, E., & Morinaga, T. (2013). Silicate fiber-based 3D cell culture system for anticancer drug screening. Anticancer Research, 33(12), 5301–5309.

    CAS  Google Scholar 

  • Young, M., Rodenhizer, D., Dean, T., D’Arcangelo, E., Xu, B., Ailles, L., & McGuigan, A. P. (2018). A TRACER 3D co-culture tumour model for head and neck cancer. Biomaterials, 164, 54–69.

    Article  CAS  Google Scholar 

  • Zhou, Y., Hutmacher, D. W., Varawan, S.-L., Lim, T. M., Zhou, Y., Hutmacher, D. W., Varawan, S.-L., & Lim, T. M. (2006). Effect of collagen-I modified composites on proliferation and differentiation of human alveolar osteoblasts. Australian Journal of Chemistry, 59(8), 571–578.

    Article  CAS  Google Scholar 

  • Ziółkowska-Suchanek, I. (2021). Mimicking tumor hypoxia in non-small cell lung cancer employing three-dimensional in vitro models. Cells, 10(1), 141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, M., Devi, A., Singh, S.P., Kumari, R., Kumar, A. (2023). 3D Cell Culture Techniques. In: Animal Cell Culture: Principles and Practice. Techniques in Life Science and Biomedicine for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-031-19485-6_14

Download citation

Publish with us

Policies and ethics