Skip to main content

Unsupervised Deep Learning-Based Hybrid Beamforming in Massive MISO Systems

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Abstract

Hybrid beamforming (HBF) is a promising approach for balancing the hardware cost, training overhead and system performance in massive MIMO systems. Optimizing the HBF through deep learning (DL) has gained considerable attention in recent years due to its potential in dealing with the nonconvex problems. However, existing DL-based HBF methods require wider or deeper neural networks to guarantee training performance, which not only leads to higher complexity in training and deploying, but also increases the risk of over-fitting. In this paper, we propose a low-complexity HBF method based on convolutional neural network (CNN) to solve the spectral efficiency (SE) maximization problem with constant modulus constraint for the analog phase shifters over the transmit power budget in a multiple-input single-output (MISO) system. An unsupervised learning strategy is derived for the constructed CNN to learn to generate feasible beamforming solutions adaptively and thus avoiding any label data when training them. Simulations show its advantages in both SE and complexity over other related algorithms.

This work was supported in part by the National Key R &D Program of China under Grant 2019YFB2102600, the National Natural Science Foundation of China (NSFC) under Grants 61701269, 61832012 and 61771289, and the Shandong Provincial Natural Science Foundation under Grant ZR2021MF026; the Fundamental Research Enhancement Program for Computer Science and Technology, the Talent Cultivation Promotion Program for Computer Science and Technology, and the Piloting Fundamental Research Program for the Integration of Scientific Research, Education and Industry of Qilu University of Technology (Shandong Academy of Sciences) under Grants 2021JC02014, 2021PY05001 and 2022XD001, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niu, Y., Li, Y., Jin, D., Su, L., Vasilakos, A.V.: A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Netw. 21(8), 2657–2676 (2015). https://doi.org/10.1007/s11276-015-0942-z

    Article  Google Scholar 

  2. Kuo, C.H., Chang, H.Y., Chang, R.Y., Chung, W.H.: Unsupervised learning based hybrid beamforming with low-resolution phase shifters for MU-MIMO systems. arXiv preprint arXiv:2202.01946 (2022)

  3. Hong, S.H., Park, J., Kim, S.J., Choi, J.: Hybrid beamforming for intelligent reflecting surface aided millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. (2022)

    Google Scholar 

  4. Molisch, A.F., et al.: Hybrid beamforming for massive MIMO: a survey. IEEE Commun. Mag. 55(9), 134–141 (2017)

    Article  Google Scholar 

  5. Zhang, X., Molisch, A.F., Kung, S.Y.: Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans. Signal Process. 53(11), 4091–4103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mo, J., Alkhateeb, A., Abu-Surra, S., Heath, R.W.: Hybrid architectures with few-bit ADC receivers: achievable rates and energy-rate tradeoffs. IEEE Trans. Wireless Commun. 16(4), 2274–2287 (2017)

    Article  Google Scholar 

  7. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., Heath, R.W.: Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wireless Commun. 13(3), 1499–1513 (2014)

    Article  Google Scholar 

  8. Hung, W.L., Chen, C.H., Liao, C.C., Tsai, C.R., Wu, A.Y.A.: Low-complexity hybrid precoding algorithm based on orthogonal beamforming codebook. In: 2015 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–5. IEEE (2015)

    Google Scholar 

  9. Yu, X., Shen, J.C., Zhang, J., Letaief, K.B.: Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 10(3), 485–500 (2016)

    Article  Google Scholar 

  10. Sohrabi, F., Yu, W.: Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Top. Signal Process. 10(3), 501–513 (2016)

    Article  Google Scholar 

  11. Ren, Y., Wang, Y., Qi, C., Liu, Y.: Multiple-beam selection with limited feedback for hybrid beamforming in massive MIMO systems. IEEE Access 5, 13327–13335 (2017)

    Article  Google Scholar 

  12. Xiong, Z., Cai, Z., Takabi, D., Li, W.: Privacy threat and defense for federated learning with non-iid data in AIoT. IEEE Trans. Industr. Inf. 18(2), 1310–1321 (2022)

    Article  Google Scholar 

  13. Cai, Z., Xiong, Z., Xu, H., Wang, P., Li, W., Pan, Y.: Generative adversarial networks: a survey toward private and secure applications. ACM Comput. Surv. 54(6), 1–38 (2021)

    Article  Google Scholar 

  14. Xu, H., Cai, Z., Li, R., Li, W.: Efficient CityCam-to-Edge cooperative learning for vehicle counting in ITS. IEEE Trans. Intell. Transp. Syst. (2022)

    Google Scholar 

  15. Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., Tujkovic, D.: Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access 6, 37328–37348 (2018)

    Article  Google Scholar 

  16. Huang, H., Song, Y., Yang, J., Gui, G., Adachi, F.: Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans. Veh. Technol. 68(3), 3027–3032 (2019)

    Article  Google Scholar 

  17. Xia, W., Zheng, G., Zhu, Y., Zhang, J., Wang, J., Petropulu, A.P.: A deep learning framework for optimization of MISO downlink beamforming. IEEE Trans. Commun. 68(3), 1866–1880 (2020)

    Article  Google Scholar 

  18. Lin, T., Zhu, Y.: Beamforming design for large-scale antenna arrays using deep learning. IEEE Wireless Commun. Lett. 9(1), 103–107 (2020)

    Article  MathSciNet  Google Scholar 

  19. Attiah, K.M., Sohrabi, F., Yu, W.: Deep learning approach to channel sensing and hybrid precoding for TDD massive MIMO systems. In: 2020 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2020)

    Google Scholar 

  20. Song, H., Zhang, M., Gao, J., Zhong, C.: Unsupervised learning-based joint active and passive beamforming design for reconfigurable intelligent surfaces aided wireless networks. IEEE Commun. Lett. 25(3), 892–896 (2021)

    Article  Google Scholar 

  21. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private information using embedded sensors in smart devices. IEEE Netw. 32(4), 8–14 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T. et al. (2022). Unsupervised Deep Learning-Based Hybrid Beamforming in Massive MISO Systems. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13472. Springer, Cham. https://doi.org/10.1007/978-3-031-19214-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19214-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19213-5

  • Online ISBN: 978-3-031-19214-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics