Skip to main content

\(\mathrm {M^{2}F}\): A Multi-modal and Multi-task Fusion Network for Glioma Diagnosis and Prognosis

  • Conference paper
  • First Online:
Multiscale Multimodal Medical Imaging (MMMI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13594))

Included in the following conference series:

Abstract

Clinical decision of oncology comes from multi-modal information, such as morphological information from histopathology and molecular profiles from genomics. Most of the existing multi-modal learning models achieve better performance than single-modal models. However, these multi-modal models only focus on the interactive information between modalities, which ignore the internal relationship between multiple tasks. Both survival analysis task and tumor grading task can provide reliable information for pathologists in the diagnosis and prognosis of cancer. In this work, we present a Multi-modal and Multi-task Fusion (\(\mathrm {M^{2}F}\)) model to make use of the potential connection between modalities and tasks. The co-attention module in multi-modal transformer extractor can excavate the intrinsic information between modalities more effectively than the original fusion methods. Joint training of tumor grading branch and survival analysis branch, instead of separating them, can make full use of the complementary information between tasks to improve the performance of the model. We validate our \(\mathrm {M^{2}F}\) model on glioma datasets from the Cancer Genome Atlas (TCGA). Experiment results show our \(\mathrm {M^{2}F}\) model is superior to existing multi-modal models, which proves the effectiveness of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  2. Braman, N., Gordon, J.W.H., Goossens, E.T., Willis, C., Stumpe, M.C., Venkataraman, J.: Deep orthogonal fusion: multimodal prognostic biomarker discovery integrating radiology, pathology, genomic, and clinical data. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 667–677. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_64

    Chapter  Google Scholar 

  3. Cerami, E., et al.: The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5), 401–404 (2012)

    Article  Google Scholar 

  4. Chen, R.J., et al.: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41(4), 757–770 (2020)

    Article  Google Scholar 

  5. Chen, R.J., et al.: Multimodal co-attention transformer for survival prediction in gigapixel whole slide images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4025 (2021)

    Google Scholar 

  6. Cui, C., et al.: Survival prediction of brain cancer with incomplete radiology, pathology, genomics, and demographic data. arXiv preprint. arXiv:2203.04419 (2022)

  7. Gallego, O.: Nonsurgical treatment of recurrent glioblastoma. Curr. Oncol. 22(4), 273–281 (2015)

    Article  Google Scholar 

  8. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 770–778 (2016)

    Google Scholar 

  10. Kang, M., Ko, E., Mersha, T.B.: A roadmap for multi-omics data integration using deep learning. Briefings Bioinformatics 23(1), bbab454 (2022)

    Article  Google Scholar 

  11. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 1–12 (2018)

    Article  Google Scholar 

  12. Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  13. Kim, W., Son, B., Kim, I.: Vilt: Vision-and-language transformer without convolution or region supervision. In: International Conference on Machine Learning, pp. 5583–5594. PMLR (2021)

    Google Scholar 

  14. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Louis, D.N., et al.: The 2021 who classification of tumors of the central nervous system: a summary. Neuro Oncol. 23(8), 1231–1251 (2021)

    Article  Google Scholar 

  16. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  17. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

    Article  Google Scholar 

  18. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: International Conference on Machine Learning (2011)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556 (2014)

  20. Sun, X., Panda, R., Feris, R., Saenko, K.: Adashare: learning what to share for efficient deep multi-task learning. Adv. Neural. Inf. Process. Syst. 33, 8728–8740 (2020)

    Google Scholar 

  21. Vafaeikia, P., Wagner, M.W., Tabori, U., Ertl-Wagner, B.B., Khalvati, F.: Improving the segmentation of pediatric low-grade gliomas through multitask learning. arXiv preprint. arXiv:2111.14959 (2021)

  22. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2021)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Wang, P., Li, Y., Reddy, C.K.: Machine learning for survival analysis: a survey. ACM Comput. Surv. (CSUR) 51(6), 1–36 (2019)

    Article  Google Scholar 

  25. Wang, R., Huang, Z., Wang, H., Wu, H.: Ammasurv: asymmetrical multi-modal attention for accurate survival analysis with whole slide images and gene expression data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 757–760. IEEE (2021)

    Google Scholar 

  26. Wen, P.Y., Reardon, D.A.: Progress in glioma diagnosis, classification and treatment. Nat. Rev. Neurol. 12(2), 69–70 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Science Foundation of Ningbo City, China, under Grant 2021J052, in part by the National Natural Science Foundation of China under Grants 62171377, and in part by the Key Research and Development Program of Shaanxi Province under Grant 2022GY-084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Z., Lu, M., Xia, Y. (2022). \(\mathrm {M^{2}F}\): A Multi-modal and Multi-task Fusion Network for Glioma Diagnosis and Prognosis. In: Li, X., Lv, J., Huo, Y., Dong, B., Leahy, R.M., Li, Q. (eds) Multiscale Multimodal Medical Imaging. MMMI 2022. Lecture Notes in Computer Science, vol 13594. Springer, Cham. https://doi.org/10.1007/978-3-031-18814-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18814-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18813-8

  • Online ISBN: 978-3-031-18814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics