Skip to main content

Split-U-Net: Preventing Data Leakage in Split Learning for Collaborative Multi-modal Brain Tumor Segmentation

  • Conference paper
  • First Online:
Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health (DeCaF 2022, FAIR 2022)

Abstract

Split learning (SL) has been proposed to train deep learning models in a decentralized manner. For decentralized healthcare applications with vertical data partitioning, SL can be beneficial as it allows institutes with complementary features or images for a shared set of patients to jointly develop more robust and generalizable models. In this work, we propose “Split-U-Net" and successfully apply SL for collaborative biomedical image segmentation. Nonetheless, SL requires the exchanging of intermediate activation maps and gradients to allow training models across different feature spaces, which might leak data and raise privacy concerns. Therefore, we also quantify the amount of data leakage in common SL scenarios for biomedical image segmentation and provide ways to counteract such leakage by applying appropriate defense strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://medicaldecathlon.com.

  2. 2.

    Implementation: We utilize components from MONAI (https://monai.io/) and NVIDIA FLARE (https://developer.nvidia.com/flare) to implement our SL simulation. In particular, we utilize MONAI’s BasicUNet as basis for Split-U-Net. All experiments were run on NVIDIA V100 GPUs with 16 GB memory.

  3. 3.

    The current leading entry - Swin_UNETR [9] achieves an average Dice score of 0.647 for the three foreground tumor classes.

References

  1. Angelou, N., et al.: Asymmetric private set intersection with applications to contact tracing and private vertical federated machine learning. arXiv preprint arXiv:2011.09350 (2020)

  2. Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

  3. Studholme, C., Hill, D.L.G., Hawkes, D.J.: Automated 3D registration of MR and pet brain images by multi-resolution optimisation of voxel similarity measures. Med. Phys. 24(1), 25–35 (1997)

    Article  Google Scholar 

  4. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Theory of cryptography conference, pp. 265–284. Springer (2006). https://doi.org/10.1007/11681878_14

  5. Erdogan, E., Kupcu, A., Cicek, A.E.: Unsplit: data-oblivious model inversion, model stealing, and label inference attacks against split learning. arXiv preprint arXiv:2108.09033 (2021)

  6. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how easy is it to break privacy in federated learning? Adv. Neural Info. Proc. Syst. 33, 16937–16947 (2020)

    Google Scholar 

  7. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018)

    Article  Google Scholar 

  8. Ha, Y.J., Lee, G., Yoo, M., Jung, S., Yoo, S., Kim, J.: Feasibility study of multi-site split learning for privacy-preserving medical systems under data imbalance constraints in covid-19, x-ray, and cholesterol dataset. Sci. Report. 12(1), 1–11 (2022)

    Article  Google Scholar 

  9. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. arXiv preprint arXiv:2201.01266 (2022)

  10. Hatamizadeh, A., et al.: Do gradient inversion attacks make federated learning unsafe? arXiv preprint arXiv:2202.06924 (2022)

  11. He, Z., Zhang, T., Lee, R.B.: Model inversion attacks against collaborative inference. In: Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162 (2019)

    Google Scholar 

  12. Jin, X., Chen, P.Y., Hsu, C.Y., Yu, C.M., Chen, T.: Catastrophic data leakage in vertical federated learning. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  13. Kaissis, G., et al.: End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3(6), 473–484 (2021)

    Article  Google Scholar 

  14. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020)

    Article  Google Scholar 

  15. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Pasquini, D., Ateniese, G., Bernaschi, M.: Unleashing the tiger: inference attacks on split learning. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 2113–2129 (2021)

    Google Scholar 

  18. Poirot, M.G.: Split learning in health care: multi-center deep learning without sharing patient data. Master’s thesis, University of Twente (2020)

    Google Scholar 

  19. Poirot, M.G., Vepakomma, P., Chang, K., Kalpathy-Cramer, J., Gupta, R., Raskar, R.: Split learning for collaborative deep learning in healthcare. arXiv preprint arXiv:1912.12115 (2019)

  20. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digital Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  23. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  24. Singh, A., Vepakomma, P., Gupta, O., Raskar, R.: Detailed comparison of communication efficiency of split learning and federated learning. arXiv preprint arXiv:1909.09145 (2019)

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Thapa, C., Chamikara, M.A.P., Camtepe, S., Sun, L.: Splitfed: when federated learning meets split learning. arXiv preprint arXiv:2004.12088 (2020)

  27. Usynin, D., et al.: Adversarial interference and its mitigations in privacy-preserving collaborative machine learning. Nat. Mach. Intell. 3(9), 749–758 (2021)

    Article  Google Scholar 

  28. Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health: distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564 (2018)

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Xu, Z., et al.: Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med. Image Anal. 24(1), 18–27 (2015)

    Article  Google Scholar 

  31. Yang, M., Lyu, L., Zhao, J., Zhu, T., Lam, K.Y.: Local differential privacy and its applications: a comprehensive survey. arXiv preprint arXiv:2008.03686 (2020)

  32. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  33. Yin, H., Mallya, A., Vahdat, A., Alvarez, J.M., Kautz, J., Molchanov, P.: See through gradients: image batch recovery via gradinversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16337–16346 (2021)

    Google Scholar 

  34. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: BatchCrypt: efficient homomorphic encryption for \(\{\)Cross-Silo\(\}\) federated learning. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 493–506 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger R. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roth, H.R. et al. (2022). Split-U-Net: Preventing Data Leakage in Split Learning for Collaborative Multi-modal Brain Tumor Segmentation. In: Albarqouni, S., et al. Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health. DeCaF FAIR 2022 2022. Lecture Notes in Computer Science, vol 13573. Springer, Cham. https://doi.org/10.1007/978-3-031-18523-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18523-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18522-9

  • Online ISBN: 978-3-031-18523-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics