Skip to main content

On the Role of Depth Predictions for 3D Human Pose Estimation

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 559))

Included in the following conference series:

  • 759 Accesses

Abstract

Following the successful application of deep convolutional neural networks to 2D human pose estimation, the next logical problem to solve is static 3D human pose estimation from monocular images. While previous solutions have shown some success, they do not fully utilize the depth information from the 2D inputs. With the goal of addressing this depth ambiguity, we build a system that takes 2D joint locations as input along with their estimated depth value and predicts their 3D positions in camera coordinates. Our system out performs comparable frame-by-frame 3D human pose estimation networks on the largest publicly available 3d motion data set, Human 3.6M. To provide further evidence for the usefulness of predicted depth values in the 3D pose estimation problem, we perform an extensive statistical analysis showing that even with potentially noisy depth predictions there is still a statistically significant correlation between the predicted depth value and the true depth value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)

    Google Scholar 

  3. Barrón, C., Kakadiaris, I.A.: Estimating anthropometry and pose from a single uncalibrated image. Comput. Vis. Image Underst. 81(3), 269–284 (2001)

    Google Scholar 

  4. Benzine, A., Chabot, F., Luvison, B., Pham, Q.C., Achard, C.: Pandanet: anchor-based single-shot multi-person 3d pose estimation. In: Proceedings of the IEEE and CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  5. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  6. Cai, Y., et al: Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2272–2281 (2019)

    Google Scholar 

  7. Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    Article  Google Scholar 

  8. Chang, J.Y., Kyoung, M.L.: 2d–3d pose consistency-based conditional random fields for 3d human pose estimation. Comput. Vis. Image Underst. 169, 52–61 (2018)

    Article  Google Scholar 

  9. Chen, C.-H., Deva, R.: 3d human pose estimation= 2d pose estimation+ matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7035–7043 (2017)

    Google Scholar 

  10. Cheng, Y., Yang, B., Wang, B., Yan, W., Tan, R.T.: Occlusion-aware networks for 3d human pose estimation in video. In: Proceedings of the IEEE and CVF International Conference on Computer Vision, pp. 723–732 (2019)

    Google Scholar 

  11. D’Agostino, R.B.: Transformation to normality of the null distribution of g1. Biometrika 679–681 (1970)

    Google Scholar 

  12. Fabbri, M., Lanzi, F., Calderara, S., Alletto, S., Cucchiara, R.: Compressed volumetric heatmaps for multi-person 3d pose estimation. In: Proceedings of the IEEE and CVF Conference on Computer Vision and Pattern Recognition, pp. 7204–7213 (2020)

    Google Scholar 

  13. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  14. Glorot, X., Yoshua, B.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  15. Hossain, M.R.I., Little, J.J.: Exploiting temporal information for 3d human pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 68–84 (2018)

    Google Scholar 

  16. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6 m: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Google Scholar 

  17. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3d human dynamics from video. In: Proceedings of the IEEE and CVF Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)

    Google Scholar 

  18. Kundu, J.N., Revanur, A., Waghmare, G.V., Venkatesh, R.M., Babu, R.V.: Unsupervised cross-modal alignment for multi-person 3D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 35–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_3

    Chapter  Google Scholar 

  19. Lee, K., Lee, I., Lee, S.: Propagating LSTM: 3d pose estimation based on joint interdependency. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 119–135 (2018)

    Google Scholar 

  20. Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23

  21. Li, S., Zhang, W., Chan, A.B.:. Maximum-margin structured learning with deep networks for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2848–2856 (2015)

    Google Scholar 

  22. Li, W., Liu, H., Ding, R., Liu, M., Wang, P., Yang, W.: Exploiting temporal contexts with strided transformer for 3d human pose estimation. IEEE Trans. Multimedia (2022)

    Google Scholar 

  23. Liu, R., Shen, J., Wang, H., Chen, C., Cheung, S.C., Asari, V.: Attention mechanism exploits temporal contexts: real-time 3d human pose reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5064–5073 (2020)

    Google Scholar 

  24. Marin-Jimenez, M.J., Romero-Ramirez, F.J., Munoz-Salinas, R., Medina-Carnicer, R.: 3d human pose estimation from depth maps using a deep combination of poses. J. Vis. Commun. Image Representation 55, 627–639 (2018)

    Article  Google Scholar 

  25. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  26. Mehta, D., et al.: Xnect: real-time multi-person 3d motion capture with a single RGB camera. ACM Trans. Graph. (TOG) 39(4), 1–82 (2020)

    Article  Google Scholar 

  27. Moon, G., Chang, J.Y. and Lee, K.M.: Camera distance-aware top-down approach for 3d multi-person pose estimation from a single RGB image. In: Proceedings of the IEEE and CVF International Conference on Computer Vision, pp. 10133–10142 (2019)

    Google Scholar 

  28. Moreno-Noguer, F.: 3d human pose estimation from a single image via distance matrix regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2823–2832 (2017)

    Google Scholar 

  29. Nie, X., Feng, J., Zhang, J., Yan, S.: Single-stage multi-person pose machines. In: Proceedings of the IEEE and CVF International Conference on Computer Vision, pp. 6951–6960 (2019)

    Google Scholar 

  30. Parameswaran, V., Chellappa, R.: View independent human body pose estimation from a single perspective image. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–II. IEEE (2004)

    Google Scholar 

  31. Park, S., Hwang, J., Kwak, N.: 3D human pose estimation using convolutional neural networks with 2d pose information. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 156–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_15

    Chapter  Google Scholar 

  32. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3d human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034 (2017)

    Google Scholar 

  33. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3d human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE and CVF Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)

    Google Scholar 

  34. Peng, B., Luo, Z.: Multi-view 3d pose estimation from single depth images. Technical report, Technical report, Technical report, Stanford University, USA, Report, Course ... (2016)

    Google Scholar 

  35. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-net++: multi-person 2d and 3d pose detection in natural images. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1146–1161 (2019)

    Google Scholar 

  36. Shan, W., Lu, H., Wang, S., Zhang, X., Gao, W.: Improving robustness and accuracy via relative information encoding in 3d human pose estimation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3446–3454 (2021)

    Google Scholar 

  37. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)

    Article  MathSciNet  Google Scholar 

  38. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  39. Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2602–2611 (2017)

    Google Scholar 

  40. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 529–545 (2018)

    Google Scholar 

  41. Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3d human pose with deep neural networks. arXiv preprint arXiv:1605.05180 (2016)

  42. Véges, M., Lőrincz, A.: Multi-person absolute 3d human pose estimation with weak depth supervision. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12396, pp. 258–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61609-0_21

    Chapter  Google Scholar 

  43. Wang, C., Li, J., Liu, W., Qian, C., Lu, C.: HMOR: hierarchical multi-person ordinal relations for monocular multi-person 3d pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 242–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_15

    Chapter  Google Scholar 

  44. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016)

    Google Scholar 

  45. Xu, T., Takano, W.: Graph stacked hourglass networks for 3d human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16105–16114 (2021)

    Google Scholar 

  46. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.: 3d human pose estimation in the wild by adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5255–5264 (2018)

    Google Scholar 

  47. Yasin, H., Iqbal, U., Kruger, B., Weber, A., Gall, J.: A dual-source approach for 3d pose estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4948–4956 (2016)

    Google Scholar 

  48. Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3d pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2148–2157 (2018)

    Google Scholar 

  49. Zanfir, A., Marinoiu, E., Zanfir, M., Popa, A.I., Sminchisescu, C.: Deep network for the integrated 3d sensing of multiple people in natural images. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  50. Zeng, A., Sun, X., Huang, F., Liu, M., Xu, Q., Lin, S.: SRNet: improving generalization in 3d human pose estimation with a split-and-recombine approach. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_30

    Chapter  Google Scholar 

  51. Zhan, Y., Li, F., Weng, R., Choi, W.: Ray3d: ray-based 3d human pose estimation for monocular absolute 3d localization. arXiv preprint arXiv:2203.11471 (2022)

  52. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3d human pose regression. In: Proceedings of the IEEE and CVF Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)

    Google Scholar 

  53. Zhen, J., et al.: SMAP: Single-Shot Multi-person Absolute 3D Pose Estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 550–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_33

    Chapter  Google Scholar 

  54. Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3d human pose estimation with spatial and temporal transformers. In: Proceedings of the IEEE and CVF International Conference on Computer Vision, pp. 11656–11665 (2021)

    Google Scholar 

  55. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Weakly-supervised transfer for 3d human pose estimation in the wild. In: IEEE International Conference on Computer Vision, ICCV, vol. 3, p. 7 (2017)

    Google Scholar 

  56. Zhou, X., Sun, X., Zhang, W., Liang, S., Wei, Y.: Deep kinematic pose regression. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 186–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alec Diaz-Arias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diaz-Arias, A., Shin, D., Messmore, M., Baek, S. (2023). On the Role of Depth Predictions for 3D Human Pose Estimation. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-031-18461-1_15

Download citation

Publish with us

Policies and ethics