Skip to main content

Condition Monitoring and Fault Detection for Electrical Machines Using IOT

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 560))

Included in the following conference series:

Abstract

Internet of Things (IoT) has become the need of the hour with the recent advancement in technology. The emergence of new technologies has helped to communicate between different machines and it has become easier to interact with them. This has helped with the reduction of maintenance costs and the time needed to fix the machine. Furthermore, it is necessary to monitor the impact of surrounding factors on electrical machines and detect any faults as soon as possible. With the integration of artificial intelligence and IoT, a system can be built to help detect faults as soon as it happens and help contain the impacts of such faults. In this research, a low-cost, efficient method to monitor any electrical machine and detect faults in real-time is being explored, which can help reduce maintenance charges. In addition, it can also help reduce the impact of the generated fault. For the research purpose, the setup consists of an induction motor and broken bars faults are considered for training models and detecting faults in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asad, B., Vaimann, T., Belahcen, A., Kallaste, A.: Broken rotor bar fault diagnostic of inverter fed induction motor using FFT, Hilbert and Park’s Vector approach. In: Proceedings of the 2018 23rd International Conference Electrical Machines ICEM 2018, pp. 2352–2358 (2018). https://doi.org/10.1109/ICELMACH.2018.8506957

  2. Vaimann, T., Sobra, J., Belahcen, A., Rassõlkin, A., Rolak, A., Kallaste, A.: Induction machine fault detection using smartphone recorded audible noise. IET Sci. Meas. Technol. 12, 554–560 (2018). https://doi.org/10.1049/iet-smt.2017.0104

    Article  Google Scholar 

  3. Parpla, R.C., Lacob, R.: Application of IoT concept on predictive maintenance of industrial equipment. MATEC Web Conf. 121, 02008 (2017). https://doi.org/10.1051/matecconf/201712102008

    Article  Google Scholar 

  4. Vaimann, T., Kallaste, A., Kilk, A.: Sensorless detection of induction motor rotor faults using the clarke vector approach. Sci. J. Riga Tech. Univ. Power Electr. Eng, 28(1), 43–48 (2011). https://doi.org/10.2478/v10144-011-0007-9

    Article  Google Scholar 

  5. Sathyan, S., Belahcen, A., Kataja, J., Vaimann, T., Sobra, J.: Computation of stator vibration of an induction motor using nodal magnetic forces. In: Proceedings of the 2016 22nd International Conference Electrical Machines ICEM, pp. 2198–2203 (2016). https://doi.org/10.1109/ICELMACH.2016.7732827

  6. Barksdale, H., Smith, Q., Khan, M.: Condition monitoring of electrical machines with Internet of Things. In: Conference Proceedings of the IEEE SOUTHEASTCON, vol. 2018-April, pp. 1–4 (2018). https://doi.org/10.1109/SECON.2018.8478989

  7. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and advances in forecasting of wind power generation. Renew. Energy 37(1), 1–8 (2012). https://doi.org/10.1016/j.renene.2011.05.033

    Article  Google Scholar 

  8. Aazam, M., Khan, I., Alsaffar, A. A., Huh, E. N.: Cloud of things: integrating internet of things and cloud computing and the issues involved. In: Proceedings of the 2014 11th International Bhurban Conference Applied Science Technol. IBCAST 2014, pp. 414–419 (2014). https://doi.org/10.1109/IBCAST.2014.6778179

  9. Li, J.H., Zhao, S., Wang, Y.R.: Using cloud computing and the internet of things to construct vehicle condition fault diagnosis platform. Appl. Mech. Mater. 11, 125 (2014). https://doi.org/10.4028/www.scientific.net/AMM.574.752

    Article  Google Scholar 

  10. Mohanraj, M., Thottungal, R., Jaikumar, K.: A can bus based fault monitoring and diagnosis system in wind turbine. In: 2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT), pp. 1–3 (2013). https://doi.org/10.1109/ICEVENT.2013.6496547

  11. Wymore, M.L., Van Dam, J.E., Ceylan, H., Quai, D.: A survey of health monitoring systems for wind turbines. Renew. Sustain. Energy Rev. 52(1069283), 976–990 (2015). https://doi.org/10.1016/j.rser.2015.07.110

    Article  Google Scholar 

  12. Mukherjee, S., Ghosh, A., Sarkar, S.K.: Arduino based wireless heart-rate monitoring system with automatic SOS message and/or call facility using SIM900A GSM module. In: 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), pp. 1–5 (2019). https://doi.org/10.1109/ViTECoN.2019.8899504

  13. Edwan, E., Abu-Musameh, M., Alsabah, A.: Blood pressure monitoring using arduino-android platform. In: 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech), pp. 87–91 (2020). https://doi.org/10.1109/iCareTech49914.2020.00024

  14. Kohtimah, K., Sudrajat, M.I., Wahyu Hidayat, S.: Infant incubator temperature controlling and monitoring system by mobile phone based on Arduino. In: 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 494–498 (2019). https://doi.org/10.1109/ISRITI48646.2019.9034646

  15. Holovatyy, A. Teslyuk, V., Lobur, M., Sokolovskyy, Y., Pobereyko, S.: Development of background radiation monitoring system based on arduino platform. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), pp. 121–124 (2018). https://doi.org/10.1109/STC-CSIT.2018.8526696

  16. Haider-e-Karar, Khuwaja, A. A., Sattar, A.: Solar power remote monitoring and controlling using Arduino, LabVIEW and web browser. In: 2015 Power Generation System and Renewable Energy Technologies (PGSRET), pp. 1–4 (2015). https://doi.org/10.1109/PGSRET.2015.7312240

  17. Janeera, D.A., Poovizhi, H., Sheik Haseena, S.S., Nivetha, S.: Smart embedded framework using Arduino and IoT for real-time noise and air pollution monitoring and alert system. In: 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 1416–1420 (2021). https://doi.org/10.1109/ICAIS50930.2021.9396041

  18. Lapshina, D., Kurilova, S.P., Belitsky, A.A.: Development of an Arduino-based CO2 monitoring device. In: 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 595–597 (2019). https://doi.org/10.1109/EIConRus.2019.8656915

  19. Mabrouki, J., Azrour, M., Dhiba, D., Farhaoui, Y., Hajjaji, S.E.: IoT-based data logger for weather monitoring using arduino-based wireless sensor networks with remote graphical application and alerts. Big Data Min. Anal. 4(1), 25–32 (2021). https://doi.org/10.26599/BDMA.2020.9020018

    Article  Google Scholar 

  20. Xie, P., et al.: Sensing wind for environmental and energy applications. In:25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014), pp. 64-69 (2014). https://doi.org/10.1049/cp.2014.0660

  21. O’Donnell, D., Srbinovsky, B., Murphy, J., Popovici, E., Pakrashi, V.: Sensor measurement strategies for monitoring offshore wind and wave energy devices. J. Phys.: Conf. Ser/ 628, 012117 (2015). https://doi.org/10.1088/1742-6596/628/1/012117

    Article  Google Scholar 

  22. Sharma, P., Kapoor, S.R.: Evaluation of arduino based das for condition monitoring of induction motor. In: 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1–4 (2017). https://doi.org/10.1109/ICOMICON.2017.8279084

  23. Andrei, O., Ungureanu, S., Miron, A., Cziker, A.C.: IoT power monitoring device using Wi-Fi and Arduino. In: 2021 9th International Conference on Modern Power Systems (MPS), pp. 1–6 (2021). https://doi.org/10.1109/MPS52805.2021.9492651

  24. Ahmad, N., Bajwa, S.I.S., Ahmad, S., Kha, L., Malik, T.A., Tahir, Y.: Autonomous unmanned surface vehicle a microcontroller based approach. In: 2011 International Conference on Electric Information and Control Engineering, ICEICE 2011 - Proceedings (2011). https://doi.org/10.1109/ICEICE.2011.5778076

  25. Kuts, V., Otto, T., Tähemaa, T., Bukhari, K., Pataraia, T.: Adaptive industrial robots using machine vision. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) (2018). https://doi.org/10.1115/IMECE2018-86720

  26. Kuts, V., et al.: Synchronizing physical factory and its digital twin through an IIOT middleware: a case study. Proc. Est. Acad. Sci. 68, 364 (2019). https://doi.org/10.3176/proc.2019.4.03

    Article  Google Scholar 

  27. Pendleton, S.D., et al.: Perception, planning, control, and coordination for autonomous vehicles. Machines 5, 6 (2017). https://doi.org/10.3390/machines5010006

    Article  Google Scholar 

  28. Debbag, Y., Yilmaz, E.N.: Internet based monitoring and control of a wind turbine via PLC. In: 2015 3rd International Istanbul Smart Grid Congress Fair, ICSG 2015 (2015). https://doi.org/10.1109/SGCF.2015.7354935

  29. Fran, M., Anitha, S., Mohan, R.R.: IoT Based wind turbine monitoring, fault diagnosis and control using UART. Int. J. Adv. Res. Manag. Archit. Technol. Eng. 3(6), 72–76 (2017)

    Google Scholar 

  30. Srbinovski, B., Conte, G., Morrison, A. P., Leahy, P., Popovici, E.: ECO: An IoT platform for wireless data collection, energy control and optimization of a miniaturized wind turbine cluster: Power analysis and battery life estimation of IoT platform. In: Proceedings of the IEEE International Conference on Industrial Technology (ICIT), pp. 412–417 (2017). https://doi.org/10.1109/ICIT.2017.7913266

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ashraf Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raja, H.A., Vaimann, T., Rassõlkin, A., Kallaste, A. (2023). Condition Monitoring and Fault Detection for Electrical Machines Using IOT. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-18458-1_12

Download citation

Publish with us

Policies and ethics