Skip to main content

Measurement Setup and Modeling Approach for the Deformation of Robot Bodies During Machining

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2022)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

  • 1397 Accesses

Abstract

Conventional industrial robots (IR) represent a cost-effective machining alternative for large components. However, due to the serial kinematics and the resulting high tool deflections, they usually lack precision. Model-based simulation and control methods are used to increase the accuracy of IR regarding both planning and the process itself. The majority of the applied models include the compliances of the gears and bearings but neglect the deformations of the manipulator bodies. This paper introduces an approach to directly measure and evaluate the deformation of robot bodies in the presence of process forces. The measurement setup contains multiple Integral Deformation Sensors (IDS), which provide the change of length due to deformations of the respective body. Subsequently, the measurements are fed to a beam model (BM), which calculates the body’s 3D Cartesian deflections. The presented approach is validated by static tensile tests on a conventional six-degree-of-freedom (DOF) robot manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verl, A., Valente, A., Melkote, S., et al.: Robots in machining. CIRP Ann. 68, 799–822 (2019). https://doi.org/10.1016/j.cirp.2019.05.009

    Article  Google Scholar 

  2. Pan, Z., Zhang, H., Zhu, Z., et al.: Chatter analysis of robotic machining process. J. Mater. Process. Technol. 173, 301–309 (2006). https://doi.org/10.1016/j.jmatprotec.2005.11.033

    Article  Google Scholar 

  3. Denkena, B., Bergmann, B., Lepper, T.: Design and optimization of a machining robot. Proc. Manuf. 14, 89–96 (2017). https://doi.org/10.1016/j.promfg.2017.11.010

    Article  Google Scholar 

  4. Möller, C., Schmidt, H.C., Koch, P., et al.: Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry. Proc. Manuf. 14, 17–29 (2017). https://doi.org/10.1016/j.promfg.2017.11.003

    Article  Google Scholar 

  5. Cordes, M., Hintze, W.: Offline simulation of path deviation due to joint compliance and hysteresis for robot machining. Int. J. Adv. Manuf. Technol. 90(1–4), 1075–1083 (2016). https://doi.org/10.1007/s00170-016-9461-z

    Article  Google Scholar 

  6. Dumas, C., Caro, S., Cherif, M., et al.: Joint stiffness identification of industrial serial robots. Robotica 30, 649–659 (2011). https://doi.org/10.1017/S0263574711000932

    Article  Google Scholar 

  7. Baum, C., Brecher, C., Klatte, M., et al.: Thermally induced volumetric error compensation by means of integral deformation sensors. Proc. CIRP 72, 1148–1153 (2018). https://doi.org/10.1016/j.procir.2018.03.045

    Article  Google Scholar 

  8. Brecher, C., Klatte, M., Lee, T.H., et al.: Metrological analysis of a mechatronic system based on novel deformation sensors for thermal issues in machine tools. Proc. CIRP 77, 517–520 (2018). https://doi.org/10.1016/j.procir.2018.08.245

    Article  Google Scholar 

  9. Lienenlüke, L., Gründel, L., Storms, S. et al.: Model-based process planning for milling operations using industrial robots. In: 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), pp 37–44. IEEE (2018)

    Google Scholar 

  10. Schnoes, F., Zaeh, M.F.: Model-based planning of machining operations for industrial robots. Procedia CIRP 82, 497–502 (2019). https://doi.org/10.1016/j.procir.2019.04.331

    Article  Google Scholar 

  11. Gründel, L., Lienenlüke, L., Storms, S., et al.: Robot-based milling operation. Machine learning algorithm for a model-based feed-forward torque control. WT Werkstattstechnik 109, 352–357 (2019)

    Article  Google Scholar 

  12. Klimchik, A., Bondarenko, D., Pashkevich, A. et al.: Compensation of tool deflection in robotic-based milling (2012)

    Google Scholar 

  13. Pashkevich, A., Klimchik, A., Chablat, D.: Enhanced stiffness modeling of manipulators with passive joints. Mech. Mach. Theory 46, 662–679 (2011). https://doi.org/10.1016/j.mechmachtheory.2010.12.008

    Article  MATH  Google Scholar 

  14. Klimchik, A., Wu, Y., Caro, S., Furet, B., Pashkevich, A.: Accuracy Improvement of robot-based milling using an enhanced manipulator model. In: Ceccarelli, M., Glazunov, V.A. (eds.) Advances on Theory and Practice of Robots and Manipulators. MMS, vol. 22, pp. 73–81. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07058-2_9

    Chapter  Google Scholar 

  15. Pfeiffer, F., Hölzl, J.: Parameter identification for industrial robots. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, pp. 1468–1476. IEEE (1995)

    Google Scholar 

  16. Roesch, O.: Model-based on-line compensation of path deviations for milling robots. AMR 769, 255–262 (2013). https://doi.org/10.4028/www.scien-tific.net/AMR.769.255

    Article  Google Scholar 

  17. Timošenko, S.P., Goodier, J.N.: Theory of elasticity, 3rd edn. Engineering societies monographs. McGraw-Hill, New York (1951)

    Google Scholar 

  18. Mikeš, K., Jirásek, M.: Free warping analysis and numerical implementation. AMM 825, 141–148 (2016). https://doi.org/10.4028/www.scien-tific.net/AMM.825.141

    Article  Google Scholar 

Download references

Acknowledgements

The IGF-project 21926 N/2 (RoSiKo) of the research association FVP (Forschungsver-einigung Programmiersprachen für Fertigungseinrichtungen e.V.) was supported via the AiF within the funding program “Industrielle Gemeinschaftsforschung und—entwicklung (IGF)” by the Federal Ministry of Economic Affairs and Climate Action (BMWK) due to a decision of the German Parliament. Furthermore, we gratefully acknowledge the support of the MABI Robotic AG and the support by D. Tipura and D. Vogel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gründel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gründel, L., Schäfer, J., Storms, S., Brecher, C. (2023). Measurement Setup and Modeling Approach for the Deformation of Robot Bodies During Machining. In: Liewald, M., Verl, A., Bauernhansl, T., Möhring, HC. (eds) Production at the Leading Edge of Technology. WGP 2022. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-18318-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18318-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18317-1

  • Online ISBN: 978-3-031-18318-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics