Skip to main content

Anonymous Tokens with Public Metadata and Applications to Private Contact Tracing

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2022)

Abstract

Anonymous single-use tokens have seen recent applications in private Internet browsing and anonymous statistics collection. We develop new schemes in order to include public metadata such as expiration dates for tokens. This inclusion enables planned mass revocation of tokens without distributing new keys, which for natural instantiations can give 77 % and 90 % amortized traffic savings compared to Privacy Pass (Davidson et al., 2018) and DIT: De-Identified Authenticated Telemetry at Scale (Huang et al., 2021), respectively. By transforming the public key, we are able to append public metadata to several existing protocols essentially without increasing computation or communication.

Additional contributions include expanded definitions, a more complete framework for anonymous single-use tokens and a description of how anonymous tokens can improve the privacy in dp\(^3\)t-like digital contact tracing applications. We also extend the protocol to create efficient and conceptually simple tokens with both public and private metadata, and tokens with public metadata and public verifiability from pairings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    PrivateStorage: medium.com/least-authority/the-path-from-s4-to-privatestorage-ae 9d4a10b2ae.

  2. 2.

    Brave: github.com/brave/brave-browser/wiki/Security-and-privacy-model-for-ad- confirmations.

  3. 3.

    Private Click Measurement: privacycg.github.io/private-click-measurement.

  4. 4.

    Pairings: hackmd.io/@zkteam/eccbench.

  5. 5.

    Zcash: github.com/zkcrypto/bls12_381.

  6. 6.

    Smittestopp: fhi.no/om/smittestopp/nokkeltall-fra-smittestopp, last accessed 2022-07-11.

References

  1. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034851

    Chapter  Google Scholar 

  2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_17

    Chapter  Google Scholar 

  3. Akagi, N., Manabe, Y., Okamoto, T.: An efficient anonymous credential system. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 272–286. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_25

    Chapter  Google Scholar 

  4. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (2013). https://doi.org/10.1145/2508859.2516687

  5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19

    Chapter  Google Scholar 

  6. Bernstein, D.J.: Curve25519: high-speed elliptic curve cryptography (2005). https://cr.yp.to/ecdh.html

  7. Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 95–112. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_6

    Chapter  Google Scholar 

  8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  9. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

    Chapter  Google Scholar 

  10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30

    Chapter  Google Scholar 

  11. Burns, J., Moore, D., Ray, K., Speers, R., Vohaska, B.: EC-OPRF: oblivious pseudorandom functions using elliptic curves. Cryptology ePrint Archive, Report 2017/111 (2017). https://eprint.iacr.org/2017/111

  12. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 345–356. ACM Press (2008). https://doi.org/10.1145/1455770.1455814

  13. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18

    Chapter  Google Scholar 

  14. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27

    Chapter  Google Scholar 

  15. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  16. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20

    Chapter  Google Scholar 

  17. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  18. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix anonymous credential system. In: Atluri, V. (ed.) ACM CCS 2002, pp. 21–30. ACM Press (2002). https://doi.org/10.1145/586110.586114

  19. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1205–1216. ACM Press (2014). https://doi.org/10.1145/2660267.2660328

  20. Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and anonymous credentials supporting efficient verifiable encryption. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1445–1459. ACM Press (2020). https://doi.org/10.1145/3372297.3417887

  21. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_18

    Chapter  Google Scholar 

  22. Chaum, D.: Blind signature system. In: Chaum, D. (ed.) Advances in Cryptology, p. 153. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4684-4730-9_14

  23. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  24. Chen, X., Zhang, F., Mu, Y., Susilo, W.: Efficient provably secure restrictive partially blind signatures from bilinear pairings. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 251–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_21

    Chapter  Google Scholar 

  25. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two improved partially blind signature schemes from bilinear pairings. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_27

    Chapter  Google Scholar 

  26. Davidson, A.: Supporting the latest version of the privacy pass protocol (2021). https://blog.cloudflare.com/supporting-the-latest-version-of-the-privacy-pass-protocol. Accessed 01 Dec 2021

  27. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass: a privacy-enhancing protocol and browser extension. https://privacypass.github.io. Accessed 01 Dec 2021

  28. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass: bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (2018). https://doi.org/10.1515/popets-2018-0026

    Article  Google Scholar 

  29. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28

    Chapter  Google Scholar 

  30. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17

    Chapter  Google Scholar 

  31. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model from weaker assumptions. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_21

    Chapter  Google Scholar 

  32. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_12

    Chapter  MATH  Google Scholar 

  33. Hanzlik, L., Slamanig, D.: With a little help from my friends: constructing practical anonymous credentials. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS 2021, Association for Computing Machinery (2021). https://doi.org/10.1145/3460120.3484582

  34. Henry, R.: Efficient Zero-Knowledge Proofs and Applications. Ph.D. thesis, University of Waterloo (2014). http://hdl.handle.net/10012/8621

  35. Henry, R., Goldberg, I.: Batch proofs of partial knowledge. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 502–517. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_32

    Chapter  Google Scholar 

  36. Huang, S., et al.: Dit: de-identified authenticated telemetry at scale. Technical report, Facebook Inc. (2021). https://research.fb.com/wp-content/uploads/2021/04/DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf

  37. Internet Engineering Task Force: Privacy pass datatracker (2021). https://datatracker.ietf.org/wg/privacypass. Accessed 01 Dec 2021

  38. Iyengar, S., Taubeneck, E.: Fraud resistant, privacy preserving reporting using blind signatures (2021). https://github.com/siyengar/private-fraud-prevention. Accessed 01 Dec 2021

  39. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_13

    Chapter  MATH  Google Scholar 

  40. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_15

    Chapter  Google Scholar 

  41. Kreuter, B., Lepoint, T., Orrù, M., Raykova, M.: Anonymous tokens with private metadata bit. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 308–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_11

    Chapter  Google Scholar 

  42. Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint Archive, Report 2017/099 (2017). https://eprint.iacr.org/2017/099

  43. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 revision 3 (2013). https://www.microsoft.com/en-us/research/project/u-prove

  44. Troncoso, C., et al.: Decentralized privacy-preserving proximity tracing. https://arxiv.org/abs/2005.12273 (2020)

  45. Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast and simple partially oblivious PRF, with applications. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 674–705. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3_23

  46. World Wide Web Consortium: Trust Token API Explainer (2021). https://github.com/WICG/trust-token-api. Accessed 01 Dec 2021

  47. Yonezawa, S., Chikara, S., Kobayashi, T., Saito, T.: Pairing-Friendly Curves (2021). https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html. Accessed 01 Dec 2021

  48. Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjerand Silde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silde, T., Strand, M. (2022). Anonymous Tokens with Public Metadata and Applications to Private Contact Tracing. In: Eyal, I., Garay, J. (eds) Financial Cryptography and Data Security. FC 2022. Lecture Notes in Computer Science, vol 13411. Springer, Cham. https://doi.org/10.1007/978-3-031-18283-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18283-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18282-2

  • Online ISBN: 978-3-031-18283-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics