Skip to main content

Stacked Spatial and Temporal Deep Learning Methods for Identification of Parkinson’s Disease Using Gait Signals

  • Conference paper
  • First Online:
XLV Mexican Conference on Biomedical Engineering (CNIB 2022)

Abstract

Parkinson’s disease (PD) is a progressive condition that affects dopaminergic neurons, causing motor alterations. Motor disturbances, such as gait impairment, can be used to assess the disease. Unfortunately, gait disturbances, such as decreased walking speed and step variability, can also occur due to aging, affecting the identification of abnormal PD gait. Therefore, developing an adequate tool to evaluate PD patients’ gait is essential. This paper proposes a deep learning algorithm to differentiate between PD gaits and normal walking using vertical ground reaction force (VGRF) signals. CLDNN is a single framework composed of a convolutional neural network, a long-short term memory network, and a deep neural network. To train and validate a CLDNN classifier gait cycles were obtained from VGRF signals. The VGRF signals were from a public database with recordings from 93 PD patients and 73 healthy adult controls. The CLDNN performance was evaluated by five-fold cross-validation. The combined spatial and temporal methods in CLDNN enabled the effective identification of PD gait with less complex architecture. The best weighted accuracy was 98.28 ± 0.38. Thus, our model is compact and efficient for future embedded or portable implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Maachi, I., Bilodeau, G.A., Bouachir, W.: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst. Appl. 143, 113,075 (2020). https://doi.org/10.1016/j.eswa.2019.113075

  2. Goldberger, A.L., et al.: Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). https://doi.org/10.1161/01.CIR.101.23.e215

    Article  Google Scholar 

  3. Hoang, N.S., Cai, Y., Lee, C.W., Yang, Y.O., Chui, C.K., Chua, M.C.H.: Gait classification for Parkinson’s disease using stacked 2D and 1D convolutional neural network. In: 2019 International Conference on Advanced Technologies for Communications (ATC), pp. 44–49. IEEE (2019). 10.1109/ATC.2019.8924567

    Google Scholar 

  4. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008). https://doi.org/10.1136/jnnp.2007.131045

    Article  Google Scholar 

  5. Prabhu, P., Pradhan, N.: Recurrence quantification analysis of human gait in neurological movement disorders. IJERT 5(03), 447–452 (2016)

    Google Scholar 

  6. Reeve, A., Simcox, E., Turnbull, D.: Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res. Rev. 14, 19–30 (2014). https://doi.org/10.1016/j.arr.2014.01.004

    Article  Google Scholar 

  7. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4580–4584. IEEE (2015). https://doi.org/10.1109/ICASSP.2015.7178838

  8. Standaert, D.G., Saint-Hilaire, M.H., Thomas, C.A.: Parkinson’s Disease Handbook. American Parkinson’s Disease Association, Staten Island (2019)

    Google Scholar 

  9. Tysnes, O.-B., Storstein, A.: Epidemiology of Parkinson’s disease. J. Neural Transm. 124(8), 901–905 (2017). https://doi.org/10.1007/s00702-017-1686-y

    Article  Google Scholar 

  10. Veeraragavan, S., Gopalai, A.A., Gouwanda, D., Ahmad, S.A.: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks. Front. Physiol. 11, 587,057 (2020). https://doi.org/10.3389/fphys.2020.587057

  11. Xia, Y., Yao, Z., Ye, Q., Cheng, N.: A dual-modal attention-enhanced deep learning network for quantification of Parkinson’s disease characteristics. IEEE Trans. Neural Syst. Rehabil. Eng. 28(1), 42–51 (2019). https://doi.org/10.1109/TNSRE.2019.2946194

    Article  Google Scholar 

  12. Zeng, W., Yuan, C., Wang, Q., Liu, F., Wang, Y.: Classification of gait patterns between patients with Parkinson’s disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks. Neural Netw. 111, 64–76 (2019). https://doi.org/10.1016/j.neunet.2018.12.012

    Article  Google Scholar 

  13. Zhao, A., Qi, L., Li, J., Dong, J., Yu, H.: A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data. Neurocomputing 315, 1–8 (2018). https://doi.org/10.1016/j.neucom.2018.03.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Guadalupe Muñoz-Mata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muñoz-Mata, B.G., Dorantes-Méndez, G., Piña-Ramírez, O. (2023). Stacked Spatial and Temporal Deep Learning Methods for Identification of Parkinson’s Disease Using Gait Signals. In: Trujillo-Romero, C.J., et al. XLV Mexican Conference on Biomedical Engineering. CNIB 2022. IFMBE Proceedings, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-031-18256-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18256-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18255-6

  • Online ISBN: 978-3-031-18256-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics