Skip to main content

Nanostructured Optical Composites of TiO2(C3N4Ox)/PANI for Photocatalytic Application

  • Conference paper
  • First Online:
Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications

Abstract

The present chapter focuses on the in situ process of nanocomposites synthesis with the presence of TiO2, C3N4Ox nanoparticles using oxidative polymerization. It is observed that the synthesis of the nanocomposites promotes optical properties in the visible range between 400 and 700 nm due to the creation of structural defects in synthesized particles of various morphologies (EPR, UV–Vis). XPS, EDX with SEM confirmed oxygen-rich composition, polymer layer on surface TiO2, C3N4Ox nanoparticles. UV–Vis spectrophotometry, XPS revealed a decrease in bandgap energies with increasing polyaniline loading. The formation of TiO2 (C3N4Ox)/PANI systems by a single-stage method can be used as a cost-effective way to avoid the disadvantages of each component and realize the synergistic effect of creating more active centers. It will be possible due to doping and strength heterojunction to increase the photocatalytic activity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilja V, Novakovic K, Travas-Sejdic J, Hrnjak-Murgic Z et al (2017) Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of azo dye in wastewater. Nanomaterials 412(7):1–16. https://doi.org/10.3390/nano7120412

    Google Scholar 

  2. Jumat NA, Wai PS, Ching JJ, Basirun WJ (2017) Synthesis of polyaniline-Tio2 nanocomposites and their application in photocatalytic degradation. Poly Poly Compos 25(7):507–511

    Google Scholar 

  3. Zahornyi M (2017) Nanosized powders as reinforcement for photoactive composites (Overview). Powder Metall Metal Ceram 56(3–4):130–147

    Article  Google Scholar 

  4. Brooms TJ, Onyango MS, Ochieng A (2014) Photocatalytic activity of polyaniline/Tio2/Zno composite for degradation of aromatic compounds in abattoir wastewater. In: International conference on chemical, integrated waste management and environmental engineering (ICCIWEE'2014) April 15–16, 2014 Johannesburg, pp. 124–130

    Google Scholar 

  5. Ghazzal MN, Kebaili U, Joseph M et al (2012) Photocatalytic degradation of rhodamine 6G on mesoporous titania films: combined effect of texture and dye aggregation forms. Appl Catalysis B: Environ 115:276–284

    Article  Google Scholar 

  6. Lavrynenko OM (2021) Comparative analysis of CeO2&Ag0 and TiO2&Ag0 nanoparticles formed under the co-precipitation. In: Lavrynenko OM, Zahornyi MM, Pavlenko OY, Tyschenko NI, Bykov OI (eds) 2021 IEEE 11th international conference on “nanomaterials: applications properties” (NAP 2021) Odesa, Ukraine, Sept. 5–11. https://doi.org/10.1109/NAP51885.2021.9568577

  7. Lavrynenko O, Pavlenko O, Dudchenko N, Brik A (2021) Physical–chemical properties of magnetite nanoparticles doped with Ag (I) and Au(III) Cations. In: Springer proceedings in physics, vol 246. https://doi.org/10.1007/978-3-030-51905-6_37

  8. Khalyavka TA, Shapovalova MV, Korzhak GV et al (2021) Photocatalytic hydrogen evolution and Rifampicinum destruction over carbon-modified TiO2. Res Chem Intermed. https://doi.org/10.1007/s11164-021-04609-1

    Article  Google Scholar 

  9. Zahornyi MM, Lavrynenko OM, Pavlenko OY, Tyschenko NI, Skoryk MA, Kornienko OA (2021) Synthesis, structure, optical and biomedical application of nanosized composites based on TiO2, Fe3O4 . In: Fesenko O, Yatsenko L (eds) Nanooptics and photonics, nanochemistry and nanobiotechnology, and their applications. NANO, 2021. Chapter springer proceedings in physics, vol 264. Springer, Cham, pp 153–164. https://doi.org/10.1007/978-3-030-74800-5_10

  10. Xu H, Jia FL, Ai ZH, Zhang LZ (2007) A general soft interface platform for the growth and assembly of hierarchical rutile TiO2 nanorods spheres. Cryst Growth Des. 7:1216–1219

    Article  Google Scholar 

  11. Gopalakrishnan K, Elango M, Thamilselvan M (2012) Optical studies on nano-structured conducting polyaniline prepared by chemical oxidation method. Arch Phys Res 3:315–319

    Google Scholar 

  12. Zahornyi MM (2021) Optical and photocatalytic activity of polyaniline/TiO2 composites with anatase and P25 nanoparticles; Zahornyi MM, Tyschenko NI, Ragulya AV, Lavrynenko OM, Kasumov AM, Melnyk AK, Kuzma OV, Ievtushenko AI (2021) J Nano-And Electron Phys 13(N5):05034–05035. https://doi.org/10.21272/jnep.13(5).05034

  13. Ghosh S, Kouamé NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H (2015) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14(5):505–511. https://doi.org/10.1038/nmat4220

    Article  ADS  Google Scholar 

  14. Zhu Y, Xu S, Yi D (2010) Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. React Funct Polym 70:282–287

    Article  Google Scholar 

  15. Liuan G, Wang J, Qi R, Wang X, Ping X, Han X (2012) A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J Mol Catal A: Chem 357:19–25

    Article  ADS  Google Scholar 

  16. Zaleska-Medynska A (2018) Metal oxide-based photocatalysis 1st edition fundamentals and prospects for application. Elsiver, p 350. Book ISBN: 9780128116340

    Google Scholar 

  17. Heshmatpour F, Zarrin S (2017) A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants. J Photochem Photobiol A: Chem 346:431–443

    Article  Google Scholar 

  18. Radoičić M, Ćirić-Marjanović G, VukSpasojević P, Mitrić M, Novaković T, Šaponjić Z (2017) Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. Appl Catal B: Environ 213:155–166

    Article  Google Scholar 

  19. Zhou S-X, Tao X-Y, Ma J, Guo L-T, Zhu Y-B, Fan H-L, Liu Z-S, Wei X-Y (2018) Synthesis of flower-like PANI/g-C3N4 nanocomposite as supercapacitor electrode. Vacuum. https://doi.org/10.1016/j.vacuum.2017.12.019

    Article  Google Scholar 

  20. Chen X, Zhu X, Xiao Y, Yang X (2015) J Electroanal Chem 743:99–104

    Article  Google Scholar 

  21. Putri LK, Ng B-J, Er C-C (2020) Appl Surf Sci 504:144427

    Article  Google Scholar 

  22. Pisanu A, Speltini A, Vigani B et al (2018) Enhanced hydrogen photogeneration by bulk g-C3N4 through a simple and efficient oxidation route. Dalton Trans 47:6772–6778

    Article  Google Scholar 

  23. Xue J, Fujitsuka M, Majima T (2019) Phys Chem Chem Phys 21:2318–2324

    Article  Google Scholar 

  24. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72

    Article  ADS  Google Scholar 

  25. Wang H, Guan Y, Hu S, Pei Y, Ma W, Fan Z (2019) NANO 14(02):1950023

    Article  Google Scholar 

  26. Qu X, Hu S, Bai J, Li P, Lu G, Kang X (2018) A facile approach to synthesize oxygen doped g-C3N4 with enhanced visible light activity under anoxic conditions via oxygen-plasma treatment. New J Chem 42(7):4998

    Article  Google Scholar 

  27. Liu X, Ji H, Wang J, Xiao J, Yuan H, Xiao D (2017) Ozone treatment of graphitic carbon nitride with enhanced photocatalytic activity under visible light irradiation. J Colloid Interface Sci 505:919

    Article  ADS  Google Scholar 

  28. Wei F, Liu Y, Zhao H, Ren X, Liu J, Hasan T, Chen L, Li Y, Su B (2018) Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale 10(9):4515

    Article  Google Scholar 

  29. Alenizi MA, Kumar R, Aslam M, Alseroury FA, Barakat MA (2019) Construction of a ternary g-C3N4/TiO2@polyaniline nanocomposite for the enhanced photocatalytic activity under solar light. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-48516-3

  30. Kharlamov A, Bondarenko M, Kharlamova G (2016) Method for the synthesis of water-soluble oxide of graphite-like carbon nitride. Diamond Relat Mater 61:46

    Article  ADS  Google Scholar 

  31. Kharlamov A, Bondarenko M, Kharlamova G, Gubareni N (2016) Features of the synthesis of carbon nitride oxide (g-C3N4)O at urea pyrolysis. Diamond Relat Mater 66:16

    Article  ADS  Google Scholar 

  32. Bondarenko M, Silenko P, Gubareni N, Khyzhun O, Ostapovskaya N, Solonin Y (2018) Synthesis of multilayer azagraphene and carbon nitride oxide. Him Fiz Tehnol Poverhni 9(4):393

    Article  Google Scholar 

  33. Li J, Shen B, Hong Z (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun 48(98):12017

    Article  Google Scholar 

  34. Bondarenko ME, Influence of the phase composition of the TiO2 matrix on the optical properties and morphology of deposited C3N4Ox nanoparticles; Bondarenko ME, Silenko PM, Solonin YM, Ragulya AV, Zahornyi MM, Shvalagin VV, Gubareni NI, Khyzhun OY (2020) Chem Phys Technol Surface 11:492

    Google Scholar 

  35. Oves M, Synthesis and antibacterial aspects of graphitic C3N4@Polyaniline composites; Oves M, Omaish Ansari M, Darwesh R, Hussian A, Alajmi MF, Qari HA (2020) Coatings 10. https://doi.org/10.3390/coatings10100950

  36. Bondarenko ME, Sylenko PM, Solonin YM, Ragulya AV, Gubareni NI, Zahornyi MN, Khyzhun OY, Ostapovska NY (2020) «Nanostructured composite O-g-C3N4/TiO2 for photocatalytic application fabricated by means of synthesis of O-doped carbon nitride on the surface of anatase nanoparticles. Nanosistemi, Nanomateriali, Nanotehnologii 81(2):265–282. https://doi.org/10.15407/nnn.18.02.265

  37. Shvalagin V (2021) Acid treated crystalline graphitic carbon nitride with improved efficiency in photocatalytic ethanol oxidation under visible light. In: Shvalagin V, Kuchmiy S, Skoryk M, Bondarenko M, Khyzhun O (eds) Materials science and engineering: B., vol 271, P 115304

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by research project of NAS of Ukraine “Development of innovative photocatalytic nanostructured materials based on ZnO and TiO2” (528/IPM-11/20).

Conflicts of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Lavrynenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zahornyi, M.M. et al. (2023). Nanostructured Optical Composites of TiO2(C3N4Ox)/PANI for Photocatalytic Application. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications . Springer Proceedings in Physics, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-031-18104-7_26

Download citation

Publish with us

Policies and ethics