Skip to main content

Ionic Conductivity in Single Crystals, Amorphous and Nanocrystalline Li2Ge7O15 Doped with Cr, Mn, Cu, Al, Gd

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 279))

Abstract

Electrical conductivity σ was studied in single crystals, amorphous and nanocrystalline lithium heptagermanate Li2Ge7O15 doped with Cr, Mn, Cu, Al, and Gd ions. The single crystals of Li2Ge7O15 were grown by Czhochralskii method; the glass was prepared by quenching the melt. Nanometer-sized crystals were obtained by controlled crystallization of the amorphous phase. Heterovalent doping strongly influences σ in Li2Ge7O15 single crystals and makes it possible to control ionic transport in a broad range. The doping effects are discussed based on the models of the impurity ions in Li2Ge7O15 crystal structure. In undoped amorphous and nanocrystalline Li2Ge7O15, conductivity increases in about three and four orders of magnitude correspondingly as compared to a single crystal. Doping of Li2Ge7O15 glass and nanocrystals with small amounts of the impurities has a less pronounced effect than for the single crystal. It is argued that electrical conductivity in various structural states of Li2Ge7O15 is provided by mobile lithium ions which are weakly bound to the germanium-oxygen framework of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier J (2004) Physical chemistry of ionic materials. Wiley, ISBN 0-470-87076-1. https://doi.org/10.1002/0470020229

  2. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. J Nature Mater 4(11):805–815. https://doi.org/10.1038/nmat1513

    Article  ADS  Google Scholar 

  3. Murthy MK (1964) Studies in germanium oxide systems: I, Phase equilibria in the system Li2O–GeO2. J Am Ceram Soc 47(7):328–331. https://doi.org/10.1111/j.1151-2916.1964.tb14433.x

    Article  Google Scholar 

  4. Haussuhl S, Wallrafen F, Recker K, Eckstein J (1980) Growth, elastic properties and phase transition of orthorombic Li2Ge7O15. Z Kristallogr 153:329–337. https://doi.org/10.1524/zkri.1980.153.3-4.329

    Article  Google Scholar 

  5. Wada M, Sawada A, Ishibashi Y (1981) Ferroelectricity and soft mode in Li2Ge7O15 crystals. J Phys Soc Japan 50(6):1811–1812. https://doi.org/10.1143/JPSJ.50.1811

    Article  ADS  Google Scholar 

  6. Tagantsev AK (1993) Weak Ferroelectrics. In: Setter N, Colla E L (eds) Ferroelectric Ceramics. Monte Verità. Birkhäuser Basel, 147–161. https://doi.org/10.1007/978-3-0348-7551-6_5

  7. Liebert BE, Huggins RA (1976) Ionic conductivity of Li4GeO4, Li2GeO3 and Li2Ge7O15. Mat Res Bull 11(5):533–538. https://doi.org/10.1016/0025-5408(76)90235-X

    Article  Google Scholar 

  8. Volnyanskii MD, Trubitsyn MP, Obaidat YAH (2008) Anisotropy of the electrical conductivity of lithium heptagermanate crystals. Phys Solid State 50(3):422–424. https://doi.org/10.1134/S1063783408030049

    Article  ADS  Google Scholar 

  9. Volnyanskii MD, Plyaka SN, Trubitsyn MP, Obaidat YAH (2012) Ion conduction and space-charge polarization processes in Li2Ge7O15 crystals. Phys Solid State 54(3):499–503. https://doi.org/10.1134/S1063783412030353

    Article  ADS  Google Scholar 

  10. Volnianskii M, Plyaka S, Trubitsyn M, Obaidat YAH (2014) Frequency dispersion of conductivity and complex impedance in Li2Ge7O15 single crystal. Ferroelectrics 462(1):74–79. https://doi.org/10.1080/00150193.2014.890880

    Article  ADS  Google Scholar 

  11. Vogel M, Petrov O, Trubitsyn M, Nesterov O, Volnianskii M (2020) 7Li NMR spectra and spin-lattice relaxation in lithium heptagermanate single crystal. Ferroelectrics 558(1):46–58. https://doi.org/10.1080/00150193.2020.1735888

    Article  ADS  Google Scholar 

  12. Nanocomposites: Ionic Conducting Materials and Structural Spectroscopies. (2008) In: Knauth P, Schoonman J (ed), Springer, ISBN 978-0-387-33202-4.

    Google Scholar 

  13. Leon C, Habasaki J, Ngai KL (2017) Dynamics of glassy, crystalline and liquid ionic conductors: experiments, theories, simulations. Topics in Applied Physics, Springer, ISBN 978-3-319-42389-0. https://doi.org/10.1007/978-3-319-42391-3

  14. Volnyanskii MD, Nesterov AA, Trubitsyn MP (2012) Thermal and electrical properties of glass-ceramics based on lithium heptagermanate. Phys Solid State 54(5):945–946. https://doi.org/10.1134/S1063783412050459

    Article  ADS  Google Scholar 

  15. Nesterov OO, Trubitsyn MP, Volnyanskii DM (2015) Metastable State of the Li2O–11.5GeO2 GlassCeramics with a High Electrical Conductivity. Phys Solid State 57 (4): 683–688. https://doi.org/10.1134/S1063783415040204

  16. Nesterov OO, Trubitsyn MP, Plyaka SM, Volnyanskii DM (2015) Complex impedance spectra of glass and glass ceramic Li2O–11.5GeO2. Phys Solid State 57(9): 1759–1763. https://doi.org/10.1134/S1063783415090255

  17. Nesterov O, Trubitsyn M, Petrov O, Vogel M, Volnianskii M, Koptiev M, Nedilko S, Rybak Y (2019) Electrical conductivity and 7Li NMR spin-lattice relaxation in amorphous and nano- and microcrystalline Li2O-7GeO2. In book: Fesenko O, Yatsenko L (eds) Nanocomposites, nanostructures, and their applications. Springer Proceedings in Physics 221 (Chapter 6): 85–96. Publisher: Springer. ISBN 978-3-030-17759-1. https://link.springer.com/chapter/https://doi.org/10.1007/978-3-030-17759-1_6

  18. Vollenke H, Wittman A, Nowotny H (1970) Die kristall-structure des lithiumhepttagermanats Li2Ge7O15. Monatch Chem 101:46–45

    Article  Google Scholar 

  19. Iwata Y, Shibuya I, Wada M, Sawada A, Ishibashi Y (1985) Neutron diffraction study of ferroelectric transition in Li2Ge7O15. Jpn J Appl Phys 24 (2): 597–599. https://iopscience.iop.org/article/https://doi.org/10.7567/JJAPS.24S2.597/pdf

  20. Iwata Y, Shibuya I, Wada M, Sawada A, Ishibashi Y (1987) Neutron diffraction study of structural phase transition in ferroelectric Li2Ge7O15. J Phys Soc Jpn 56(7):2420–2427. https://doi.org/10.1143/JPSJ.56.2420

    Article  ADS  Google Scholar 

  21. Trubitsyn MP, Volnyanskii MD, Obaidat YAH (2008) Ionic conduction in Li2Ge7O15 crystals doped with Cr and Mn ions. Phys Solid State 50(7):1234–1237. https://doi.org/10.1134/S106378340807007X

    Article  ADS  Google Scholar 

  22. Koptiev MM, Trubitsyn MP, Volnianskii MD, Plyaka SM, Yu KA (2020) Electrical conductivity of Li2Ge7O15 crystals doped with Al. Mol Cryst Liq Cryst 700(1):13–21. https://doi.org/10.1080/15421406.2020.1732547

    Article  Google Scholar 

  23. Powell RC (1968) Energy transfer between chromium ions in nonequivalent sites in Li2Ge7O15. Phys Rev 173(2):358–366. https://doi.org/10.1103/PhysRev.173.358

    Article  ADS  Google Scholar 

  24. Galeev AA, Khasanova NM, Bykov AV, Vinokurov VM, Nizamutdinov NM, Bulka GR (1990) EPR of Cr3+ and Fe3+ ions in Li2Ge7O15 single crystals. In: Morozov VP (ed) Spectroscopy, crystal chemistry, and the real structure of minerals and their analogues (Kazan University, Kazan): 77–92. [in Russian].

    Google Scholar 

  25. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  26. Basun SA, Feofilov SP, Kaplyanskii AA (1993) Ferroelectric phase transition induced by pseudo-stark splitting in spectra of Li2Ge7O15:Cr3+ crystals. Ferroelectrics 143(1):163–170. https://doi.org/10.1080/00150199308008325

    Article  ADS  Google Scholar 

  27. Kaplyanskii AA, Basun SA, Feofilov SP (1995) Ferroelectric transition induced dipole moments in probe ions in Li2Ge7O15 crystals doped with Mn4+ and Cr3+. Ferroelectrics 169(1):245–248. https://doi.org/10.1080/00150199508217335

    Article  ADS  Google Scholar 

  28. Kaplyanskii AA, Basun SA, Feofilov SP (1995) New spectroscopic effects of ferroelectric phase transition in Li2Ge7O15 crystals doped with 3d3-Ions. Radiat Eff Defects Solids 135(1–4):69–72. https://doi.org/10.1080/10420159508229808

    Article  ADS  Google Scholar 

  29. Trubitsyn MP, Volnyanski MD, Busoul IA (1998) EPR study of the ferroelectric phase transition in Li2Ge7O15:Cr3+. Phys Solid State 40(6): 1006–1008. https://pdf.zlibcdn.com/dtoken/0c9f8b7f7a7ff511c0c90b922da36c75/1.1130476.pdf

  30. Trubitsyn MP, Volnyanskii MD, Yu KA (2004) The influence of chromium impurity centers on the critical properties of a weakly polar ferroelectric Li2Ge7O15. Phys Solid State 46(9):1730–1736. https://doi.org/10.1134/1.1799194

    Article  ADS  Google Scholar 

  31. Volnyanskii MD, Trubitsyn MP, Obaidat YAK (2007) Dielectric relaxation of Cr3+–Li+ pair centers in Li2Ge7O15 crystals. Phys Solid State 49(8): 1453–1456. https://doi.org/10.1134/S1063783407080082

  32. Volnyanskii MD, Trubitsyn MP, Obaidat YAK (2007) EPR and dielectric spectroscopy of reorienting Cr3+–Li+ pair centres in Li2Ge7O15 crystal. Condensed Matter Phys 10(1) (49): 75–78. https://doi.org/10.5488/CMP.10.1.75

  33. Trubitsyn MP, Volnyanskii MD, Yu KA (1991) EPR of Mn2+ ions in lithium heptagermanate crystal. Kristallografiya 36(6):1472–1476

    Google Scholar 

  34. Trubitsyn MP, Volnianskii MD, Yu KA (2005) EPR of LGO: Cu2+ crystals. Ferroelectrics 316:121–123. https://doi.org/10.1080/00150190590963237

    Article  ADS  Google Scholar 

  35. Trubitsyn MP, Volnyanski MD, Dolinchuk AN (2008) EPR study of copper ions in Li2Ge7O15 crystals. Phys Solid State 50(8):1373–1377. https://doi.org/10.1134/S1063783408080076

    Article  Google Scholar 

  36. Pernice P, Aronne A, Marotta M (1992) The non-isothermal devitrification of lithium tetragermanate glass. Mater Chem Phys 30(3):195–198. https://doi.org/10.1016/0254-0584(92)90223-u

    Article  Google Scholar 

  37. Marotta A, Pernice P, Aronne A, Catauro M (1993) The non-isothermal devitrification of lithium germanate glasses. J Thermal Anal 40(1):181–188. https://doi.org/10.1007/BF02546568

    Article  Google Scholar 

  38. Aronne A, Catauro M, Pernice P, Marotta A (1993) Gel synthesis and crystallization of Li2O-7GeO2 glass powders. Thermochim Acta 216:169–176

    Article  Google Scholar 

  39. Nesterov OO, Trubitsyn MP, Nedilko SG, Volnianskii MD, Plyaka SM, Rybak Ya O (2018) Ionic conductivity in multiphase Li2O-7GeO2 compounds. Acta Phys Polonica 133(4):892–896. https://doi.org/10.12693/APhysPolA.133.892

    Article  ADS  Google Scholar 

  40. Volnianskii MD, Nesterov OO, Trubitsyn MP (2014) Devitrification of the Li2O-x(GeO2) Glass. Ferroelectrics 466(1):126–130. https://doi.org/10.1080/00150193.2014.895173

    Article  ADS  Google Scholar 

  41. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916. https://doi.org/10.1016/j.ssi.2009.03.022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trubitsyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trubitsyn, M., Koptiev, M., Volnianskii, M. (2023). Ionic Conductivity in Single Crystals, Amorphous and Nanocrystalline Li2Ge7O15 Doped with Cr, Mn, Cu, Al, Gd. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_35

Download citation

Publish with us

Policies and ethics