Skip to main content

Electron Interaction-Driven Peculiarities of Strongly Correlated System Thermopower

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 279))

  • 224 Accesses

Abstract

In the present work, we make use of the theoretical model of electron subsystem for strongly correlated compound with a peculiar density of electronic states (DOS). The energy spectrum has been calculated within the unperturbative approach. The chemical potential and Seebeck coefficient have been calculated numerically for a number of realistic DOS forms for non-integer band fillings. Distinct types of Seebeck coefficient temperature behavior have been attributed to different electron interaction regimes to be realized in some regions of electron band filling and strongly influenced by the DOS form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Urban JJ, Menon AK, Tian Zh, Jain A, Hippalgaonkar K (2019) New horizons in thermoelectric materials: correlated electrons, organic transport, machine learning, and more. J Appl Phys 125:180902. https://doi.org/10.1063/1.5092525

  2. Matsuno J, Fujioka J, Okuda T, Ueno K, Mizokawa T, Katsufuji T (2018) Strongly correlated oxides for energy harvesting. Sci Technol Adv Mater 19:899–908. https://doi.org/10.1080/14686996.2018.1529524

    Article  Google Scholar 

  3. Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:R12685

    Article  ADS  Google Scholar 

  4. Wang Y, Rogado N, Cava R et al (2003) Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nat 423:425. https://doi.org/10.1038/nature01639

    Article  ADS  Google Scholar 

  5. Okuda T, Nakanishi K, Miyasaka S, Tokura Y (2001) Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3. Phys Rev B 63:113104. https://doi.org/10.1103/PhysRevB.63.113104

    Article  ADS  Google Scholar 

  6. Shastry BS (2013) Thermopower in correlated systems. In: Zlatic V, Hewson A (eds) New materials for thermoelectric applications: theory and experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht, pp 25–29. https://doi.org/10.1007/978-94-007-4984-9_2

  7. Shastry BS (2006) Sum rule for thermal conductivity and dynamical thermal transport coefficients in condensed matter. Phys Rev B 73:085117. https://doi.org/10.1103/PhysRevB.73.085117

    Article  ADS  Google Scholar 

  8. Peterson M, Shastry BS, Haerter J (2007) Thermoelectric effects in a strongly correlated model for NaxCoO2. Phys Rev B 76:165118. https://doi.org/10.1103/PhysRevB.76.165118

    Article  ADS  Google Scholar 

  9. Matsuo M, Okamoto S, Koshibae W, Mori M, Maekawa S (2011) Nonmonotonic temperature dependence of thermopower in strongly correlated electron systems. Phys Rev B 84:153107. https://doi.org/10.1103/PhysRevB.84.153107

    Article  ADS  Google Scholar 

  10. Pálsson G, Kotliar G (1998) Thermoelectric response near the density driven Mott transition. Phys Rev Lett 80:4775. https://doi.org/10.1103/PhysRevLett.80.4775

    Article  ADS  Google Scholar 

  11. Oudovenko VS, Kotliar G (2002) Thermoelectric properties of the degenerate Hubbard model. Phys Rev B 65:075102. https://doi.org/10.1103/PhysRevB.65.075102

    Article  ADS  Google Scholar 

  12. Koshibae W, Maekawa S (2001) Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. Phys Rev Lett 87:236603. https://doi.org/10.1103/PhysRevLett.87.236603

    Article  ADS  Google Scholar 

  13. Sekino M, Okamoto S, Koshibae W, Mori M, Maekawa S (2014) Temperature dependence of thermopower in strongly correlated multiorbital systems. JPS Conf Proc 3:017014. https://doi.org/10.7566/JPSCP.3.017014

    Article  Google Scholar 

  14. Ishida Y, Ohta H, Fujimori A, Hosono H (2007) Temperature dependence of the chemical potential in NaxCoO2: implications for the large thermoelectric power. J Phys Soc Jpn 76:103709. https://doi.org/10.1143/JPSJ.76.103709

    Article  ADS  Google Scholar 

  15. Didukh L, Kramar O, Skorenkyy Yu, Dovhopyaty Yu. (2005) Magnetic field dependence of conductivity and effective mass of carriers in a model of Mott-Hubbard material. Condens Matter Phys 8(4):825. https://doi.org/10.5488/CMP.8.4.825

  16. Skorenkyy Y, Kramar O, Dovhopyaty Y (2020) Electron-hole asymmetry in electron systems with orbital degeneracy and correlated hopping. Condens Matter Phys 23(4):43714. https://doi.org/10.5488/CMP.23.43714

    Article  ADS  Google Scholar 

  17. Didukh L (2000) A modified form of the polar model of crystals. Acta Phys Pol B 31(12):3097–3133

    ADS  Google Scholar 

  18. Gorski G., Mizia J. (2004) Magnetic ordering of itinerant systems: the role of kinetic interactions. Physica B 344:231–242. https://doi.org/10.1016/S0921-4526(02)01458-8

  19. Didukh L., Skorenkyy Yu., Kramar O (2008) Electron correlations in narrow energy bands: modified polar model approach. Condens Matter Phys 11:443–454. https://doi.org/10.5488/CMP.11.3.443

  20. Shvaika AM (2014) Effect of correlated hopping on thermoelectric properties: exact solutions for the Falicov-Kimball model. Condens Matter Phys 17(4):43704. https://doi.org/10.5488/CMP.17.43704

    Article  ADS  Google Scholar 

  21. Dobushovskyi DA, Shvaika AM (2020) Thermoelectric properties of Mott insulator with correlated hopping at microdoping. Condens Matter Phys 23(1):13703. https://doi.org/10.5488/CMP.23.13703

    Article  ADS  Google Scholar 

  22. Skorenkyy Y, Didukh L, Kramar O, Dovhopyaty Y (2007) Mott transition, ferromagnetism and conductivity in the generalized Hubbard model. Acta Phys Pol A 111:635. https://doi.org/10.12693/APhysPolA.111.635

  23. Hubbard J (1965) Electron correlation in narrow energy bands – IV. The atomic representation. Proc Roy Soc A 285:542. https://doi.org/10.1098/rspa.1965.0124

  24. Didukh L, Skorenkyy Yu, Dovhopyaty Yu, Hankevych V (2000) Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping. Phys Rev B 61:7893. https://doi.org/10.1103/PhysRevB.61.7893

  25. Didukh L, Skorenkyy Yu, Hankevych V, Kramar O (2001) Ground state ferromagnetism in a doubly orbitally degenerate model. Phys Rev B 64:144428. https://doi.org/10.1103/PhysRevB.64.144428

  26. Didukh L, Hankevych V, Kramar O, Skorenkyy Yu (2002) Itinerant ferromagnetism of systems with orbital degeneracy. J Phys Condens Matter 14:827. https://doi.org/10.1088/0953-8984/14/4/315

  27. Kramar O, Skorenkyy Yu, Dovhopyaty Yu (2019) Effective masses of carriers in the degenerate conduction band: interplay of density of electronic states peculiarities and magnetization. J Nano Electron Phys 11(5):05030. https://doi.org/10.21272/jnep.11(5).05030

  28. Didukh L, Kramar O (2002) Metallic ferromagnetism in a generalized Hubbard model. FizikaNizkikhTemperatur (Kharkov) 28:42. https://doi.org/10.1063/1.1449182

    Article  Google Scholar 

  29. Didukh L, Kramar O (2005) Metallic ferromagnetism in the systems with strongly correlated electrons. Condens Matter Phys 8:547. https://doi.org/10.5488/CMP.8.3.547

    Article  ADS  Google Scholar 

  30. Vollhardt D, Blümer N, Held K, Kollar M, Schlipf J, Ulmke M, Wahle J (1999) Metallic ferromagnetism: progress in our understanding of an old strong-coupling problem. In: Kramer B (ed) Advances in solid state physics, vol 38. Springer, Berlin-Heidelberg, p 383. https://doi.org/10.1007/BFb0107631

  31. Singh S, Pandey SK (2017) Understanding the thermoelectric properties of LaCoO3 compound. Phil Mag 97(6):451. https://doi.org/10.1080/14786435.2016.1263404

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Skorenkyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kramar, O., Dovhopyatyy, Y., Skorenkyy, Y. (2023). Electron Interaction-Driven Peculiarities of Strongly Correlated System Thermopower. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_15

Download citation

Publish with us

Policies and ethics