Skip to main content

Joint Reconstruction and Parcellation of Cortical Surfaces

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13596))

Included in the following conference series:

  • 651 Accesses

Abstract

The reconstruction of cerebral cortex surfaces from brain MRI scans is instrumental for the analysis of brain morphology and the detection of cortical thinning in neurodegenerative diseases like Alzheimer’s disease (AD). Moreover, for a fine-grained analysis of atrophy patterns, the parcellation of the cortical surfaces into individual brain regions is required. For the former task, powerful deep learning approaches, which provide highly accurate brain surfaces of tissue boundaries from input MRI scans in seconds, have recently been proposed. However, these methods do not come with the ability to provide a parcellation of the reconstructed surfaces. Instead, separate brain-parcellation methods have been developed, which typically consider the cortical surfaces as given, often computed beforehand with FreeSurfer. In this work, we propose two options, one based on a graph classification branch and another based on a novel generic 3D reconstruction loss, to augment template-deformation algorithms such that the surface meshes directly come with an atlas-based brain parcellation. By combining both options with two of the latest cortical surface reconstruction algorithms, we attain highly accurate parcellations with a Dice score of 90.2 (graph classification branch) and 90.4 (novel reconstruction loss) together with state-of-the-art surfaces.

A.-M. Rickmann and F. Bongratz—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://surfer.nmr.mgh.harvard.edu/.

References

  1. Bongratz, F., Rickmann, A.M., Pölsterl, S., Wachinger, C.: Vox2cortex: fast explicit reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks. In: CVPR (2022)

    Google Scholar 

  2. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference. The Eurographics Association (2008)

    Google Scholar 

  3. Coupé, P., et al.: Assemblynet: a large ensemble of CNNs for 3Dd whole brain MRI segmentation. NeuroImage 219, 117026 (2020)

    Google Scholar 

  4. Cruz, R.S., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.: Deepcsr: a 3D deep learning approach for cortical surface reconstruction. In: WACV, pp. 806–815 (2021)

    Google Scholar 

  5. Cucurull, G., et al.: Convolutional neural networks for mesh-based parcellation of the cerebral cortex (2018)

    Google Scholar 

  6. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

    Google Scholar 

  7. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53(1), 1–15 (2010)

    Article  Google Scholar 

  8. Eschenburg, K.M., Grabowski, T.J., Haynor, D.R.: Learning cortical parcellations using graph neural networks. Front. Neurosci. 15 (2021)

    Google Scholar 

  9. van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J.W., Coalson, T.S.: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cerebral Cortex 22(10), 2241–2262 (2012)

    Article  Google Scholar 

  10. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  11. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1997), USA, pp. 209–216 (1997)

    Google Scholar 

  12. Gkioxari, G., Johnson, J., Malik, J.: Mesh r-cnn. In: ICCV, pp. 9784–9794 (2019)

    Google Scholar 

  13. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Google Scholar 

  14. Gopinath, K., Desrosiers, C., Lombaert, H.: Graph convolutions on spectral embeddings for cortical surface parcellation. Med. Image Anal. 54, 297–305 (2019)

    Article  Google Scholar 

  15. Gopinath, K., Desrosiers, C., Lombaert, H.: SegRecon: learning joint brain surface reconstruction and segmentation from images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 650–659. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_61

  16. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: Fastsurfer - a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219, 117012 (2020)

    Article  Google Scholar 

  17. Huo, Y., et al.: 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage 194, 105–119 (2019)

    Google Scholar 

  18. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6 (2012)

    Google Scholar 

  19. Kong, F., Shadden, S.C.: Whole heart mesh generation for image-based computational simulations by learning free-from deformations (2021)

    Google Scholar 

  20. Lebrat, L., et al.: Corticalflow: a diffeomorphic mesh transformer network for cortical surface reconstruction. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  21. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8(2), 1–15 (2003)

    Article  Google Scholar 

  22. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  23. Ma, Q., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A.: PialNN: a fast deep learning framework for cortical pial surface reconstruction. In: Abdulkadir, A., et al. (eds.) MLCN 2021. LNCS, vol. 13001, pp. 73–81. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_8

  24. Mai, J.K., Paxinos, G.: The Human Nervous System. Academic Press (2011)

    Google Scholar 

  25. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cognit. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  26. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019)

    Google Scholar 

  27. Ravi, N., et al.: Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020)

  28. Roe, J.M., et al.: Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. Nat. Commun. 12(1) (2021)

    Google Scholar 

  29. Smith, L.N.: Cyclical learning rates for training neural networks. In: WACV, pp. 464–472 (2017)

    Google Scholar 

  30. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

  31. Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2Mesh: 3D mesh model generation from volumetric data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30

Download references

Acknowledgments

This research was partially supported by the Bavarian State Ministry of Science and the Arts and coordinated by the bidt, and the BMBF (DeepMentia, 031L0200A). We gratefully acknowledge the computational resources provided by the Leibniz Supercomputing Centre (www.lrz.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Rickmann .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1722 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rickmann, AM., Bongratz, F., Pölsterl, S., Sarasua, I., Wachinger, C. (2022). Joint Reconstruction and Parcellation of Cortical Surfaces. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2022. Lecture Notes in Computer Science, vol 13596. Springer, Cham. https://doi.org/10.1007/978-3-031-17899-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17899-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17898-6

  • Online ISBN: 978-3-031-17899-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics