Skip to main content

The Echocardiogram in Amyloidosis

  • Chapter
  • First Online:
Amyloidosis and Fabry Disease

Abstract

Amyloidosis is a systemic disease caused by the extracellular deposition of insoluble amyloid fibrils in the heart and the echocardiogram is a key diagnostic method for the suspicion and diagnosis of this and other cardiac infiltrative diseases. Most of the classic and more specific findings of the disease are not present until later stages of infiltrative burden; in the early stages, it lacks specificity to precisely distinguish amyloid from nonamyloid infiltrative or hypertrophic heart diseases. The classical findings are biatrial enlargement, valvular and interatrial septum thickening, pleural and pericardial effusion, and biventricular hypertrophy with a bright and sparkling appearance with preserved left ventricular ejection fraction associated with diastolic dysfunction with a restrictive pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387(10038):2641–54.

    Article  CAS  Google Scholar 

  2. Knight DS, Zumbo G, Barcella W, Steeden JA, Muthurangu V, Martinez-Naharro A, et al. Cardiac structural and functional consequences of amyloid deposition by cardiac magnetic resonance and echocardiography and their prognostic roles. JACC Cardiovasc Imaging. 2019;12(5):823–33.

    Article  Google Scholar 

  3. Mohty D, Damy T, Cosnay P, Echahidi N, Casset-Senon D, Virot P, et al. Cardiac amyloidosis: updates in diagnosis and management. Arch Cardiovasc Dis. 2013;106(10):528–40.

    Article  Google Scholar 

  4. Bodez D, Galat A, Guellich A, Deux J-F, Rosso J, le Bras F, et al. Les amyloses cardiaques : les reconnaître et les prendre en charge. Presse Med. 2016;45(10):845–55.

    Article  Google Scholar 

  5. Zhang KW, Stockerl-Goldstein KE, Lenihan DJ. Emerging therapeutics for the treatment of light chain and transthyretin amyloidosis. JACC: basic to translational. Science. 2019;4(3):438–48.

    Google Scholar 

  6. Merlini G, Palladini G. Light chain amyloidosis: the heart of the problem. Hema. 2013;98(10):1492–5.

    CAS  Google Scholar 

  7. Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin amyloid cardiomyopathy. J Am Coll Cardiol. 2019;73(22):2872–91.

    Article  CAS  Google Scholar 

  8. Lee S-P, Park J-B, Kim H-K, Kim Y-J, Grogan M, Sohn D-W. Contemporary imaging diagnosis of cardiac amyloidosis. J Cardiovasc Imaging. 2019;27(1):1.

    Article  Google Scholar 

  9. Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis. JACC Cardiovasc Imaging. 2020;13(6):1368–83.

    Article  Google Scholar 

  10. Feng D, Syed IS, Martinez M, Oh JK, Jaffe AS, Grogan M, et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation. 2009;119(18):2490–7.

    Article  CAS  Google Scholar 

  11. Gertz MA. Immunoglobulin light chain amyloidosis: 2018 update on diagnosis, prognosis, and treatment. Am J Hematol. 2018;93(9):1169–80.

    Article  CAS  Google Scholar 

  12. Vergaro G, Aimo A, Barison A, Genovesi D, Buda G, Passino C, et al. Keys to early diagnosis of cardiac amyloidosis: red flags from clinical, laboratory and imaging findings. Eur J Prev Cardiol. 2020;27(17):1806–15.

    Article  Google Scholar 

  13. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors. J Am Soc Echocardiogr. 2015;28(10):1171–1181.e2.

    Article  Google Scholar 

  14. Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19(6):591–600.

    Article  Google Scholar 

  15. Soufi Taleb Bendiab N, Meziane-Tani A, Ouabdesselam S, Methia N, Latreche S, Henaoui L, et al. Factors associated with global longitudinal strain decline in hypertensive patients with normal left ventricular ejection fraction. Eur J Prev Cardiol. 2017;24(14):1463–72.

    Article  Google Scholar 

  16. Yiu KH, Atsma DE, Delgado V, Ng ACT, Witkowski TG, Ewe SH, et al. Myocardial structural alteration and systolic dysfunction in preclinical hypertrophic cardiomyopathy mutation carriers. PLoS One. 2012;7(5):e36115.

    Article  CAS  Google Scholar 

  17. De S, Borowski AG, Wang H, Nye L, Xin B, Thomas JD, et al. Subclinical echocardiographic abnormalities in phenotype-negative carriers of myosin-binding protein C3 gene mutation for hypertrophic cardiomyopathy. Am Heart J. 2011;162(2):262–267.e3.

    Article  Google Scholar 

  18. Schroeder J, Hamada S, Gründlinger N, Rubeau T, Altiok E, Ulbrich K, et al. Myocardial deformation by strain echocardiography identifies patients with acute coronary syndrome and nondiagnostic ECG presenting in a chest pain unit: a prospective study of diagnostic accuracy. Clin Res Cardiol. 2016;105(3):248–56.

    Article  Google Scholar 

  19. van der Bijl P, Bootsma M, Hiemstra YL, Ajmone Marsan N, Bax JJ, Delgado V. Left ventricular 2D speckle tracking echocardiography for detection of systolic dysfunction in genetic, dilated cardiomyopathies. Eur Heart J Cardiovasc Imaging. 2019;20(6):694–9.

    Article  Google Scholar 

  20. Teske AJ, Cox MGPJ, te Riele ASJM, de Boeck BW, Doevendans PA, Hauer RNW, et al. Early detection of regional functional abnormalities in asymptomatic ARVD/C gene carriers. J Am Soc Echocardiogr. 2012;25(9):997–1006.

    Article  Google Scholar 

  21. Bellavia D, Michelena HI, Martinez M, Pellikka PA, Bruce CJ, Connolly HM, et al. Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular noncompaction. Heart. 2010;96(6):440–7.

    Article  Google Scholar 

  22. Schouver E-D, Moceri P, Doyen D, Tieulie N, Queyrel V, Baudouy D, et al. Early detection of cardiac involvement in sarcoidosis with 2-dimensional speckle-tracking echocardiography. Int J Cardiol. 2017;227:711–6.

    Article  Google Scholar 

  23. Cianciulli TF, Albarracín GA, Napoli Llobera M, Prado NG, Saccheri MC, Hernández Vásquez YM, et al. Speckle tracking echocardiography in the indeterminate form of chagas disease. Echocardiography. 2021;38(1):39–46.

    Article  Google Scholar 

  24. Romano MMD, Moreira HT, Marin-Neto JA, Baccelli PE, Alenezi F, Klem I, et al. Early impairment of myocardial deformation assessed by regional speckle-tracking echocardiography in the indeterminate form of chagas disease without fibrosis detected by cardiac magnetic resonance. PLoS Negl Trop Dis. 2020;14(11):e0008795.

    Article  Google Scholar 

  25. Lu D-Y, Huang W-M, Wang W-T, Hung S-C, Sung S-H, Chen C-H, et al. Reduced global longitudinal strain as a marker for early detection of Fabry cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2022;23(4):487–95.

    Article  Google Scholar 

  26. Krämer J, Niemann M, Liu D, Hu K, Machann W, Beer M, et al. Two-dimensional speckle tracking as a noninvasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J. 2013;34(21):1587–96.

    Article  Google Scholar 

  27. Dedobbeleer C, Rai M, Donal E, Pandolfo M, Unger P. Normal left ventricular ejection fraction and mass but subclinical myocardial dysfunction in patients with Friedreich’s ataxia. Eur Heart J Cardiovasc Imaging. 2012;13(4):346–52.

    Article  Google Scholar 

  28. Ternacle J, Bodez D, Guellich A, Audureau E, Rappeneau S, Lim P, et al. Causes and consequences of longitudinal LV dysfunction assessed by 2D strain echocardiography in cardiac amyloidosis. JACC Cardiovasc Imaging. 2016;9(2):126–38.

    Article  Google Scholar 

  29. Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8.

    Article  Google Scholar 

  30. Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Störk S, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circulation Cardiovasc Imaging. 2013;6(6):1066–72.

    Article  Google Scholar 

  31. Pagourelias ED, Mirea O, Duchenne J, van Cleemput J, Delforge M, Bogaert J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis. Circulation Cardiovasc Imaging. 2017;10(3)

    Google Scholar 

  32. Urbano-Moral JA, Gangadharamurthy D, Comenzo RL, Pandian NG, Patel AR. Three-dimensional speckle tracking echocardiography in light chain cardiac amyloidosis: examination of left and right ventricular myocardial mechanics parameters. Revista Española de Cardiología (English Edition). 2015;68(8):657–64.

    Article  Google Scholar 

  33. Arvidsson S, Henein MY, Wikström G, Suhr OB, Lindqvist P. Right ventricular involvement in transthyretin amyloidosis. Amyloid. 2018;25(3):160–6.

    Article  CAS  Google Scholar 

  34. Bellavia D, Pellikka PA, Dispenzieri A, Scott CG, Al-Zahrani GB, Grogan M, et al. Comparison of right ventricular longitudinal strain imaging, tricuspid annular plane systolic excursion, and cardiac biomarkers for early diagnosis of cardiac involvement and risk stratification in primary systematic (AL) amyloidosis: a 5-year cohort study. Eur Heart J Cardiovasc Imaging. 2012;13(8):680–9.

    Article  Google Scholar 

  35. di Bella G, Minutoli F, Pingitore A, Zito C, Mazzeo A, Aquaro GD, et al. Endocardial and epicardial deformations in cardiac amyloidosis and hypertrophic cardiomyopathy. Circ J. 2011;75(5):1200–8.

    Article  Google Scholar 

  36. Sun JP, Stewart WJ, Yang XS, Donnell RO, Leon AR, Felner JM, et al. Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of Ventricular Wall thickening by two-dimensional strain imaging echocardiography. Am J Cardiol. 2009;103(3):411–5.

    Article  Google Scholar 

  37. Cappelli F, Porciani MC, Bergesio F, Perfetto F, de Antoniis F, Cania A, et al. Characteristics of left ventricular rotational mechanics in patients with systemic amyloidosis, systemic hypertension and normal left ventricular mass. Clin Physiol Funct Imaging. 2011;31:159–65.

    Google Scholar 

  38. Porciani MC, Cappelli F, Perfetto F, Ciaccheri M, Castelli G, Ricceri I, et al. Rotational mechanics of the left ventricle in AL amyloidosis. Echocardiography. 2010;27(9):1061–8.

    Article  Google Scholar 

  39. Aimo A, Fabiani I, Giannoni A, Mandoli GE, Pastore MC, Vergaro G, et al. Multichamber speckle tracking imaging and diagnostic value of left atrial strain in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2022; https://doi.org/10.1093/ehjci/jeac057.

  40. Harapoz M, Evans S, Geenty P, Kwok F, Stewart G, Taylor MS, et al. Correlation of quantitative 99mTc DPD scintigraphy with echocardiographic alterations in left atrial parameters in transthyretin amyloidosis. Heart Lung Circ. 2022;31:804–14.

    Article  Google Scholar 

  41. Santarone M, Corrado G, Tagliagambe LM, Manzillo GF, Tadeo G, Spata M, et al. Atrial thrombosis in cardiac amyloidosis: diagnostic contribution of transesophageal echocardiography. J Am Soc Echocardiogr. 1999;12(6):533–6.

    Article  CAS  Google Scholar 

  42. Bandera F, Martone R, Chacko L, Ganesananthan S, Gilbertson JA, Ponticos M, et al. Clinical importance of left atrial infiltration in cardiac transthyretin amyloidosis. JACC Cardiovasc Imaging. 2022;15(1):17–29.

    Article  Google Scholar 

  43. Daloia A, Vizzardi E, Chiari E, Faggiano P, Squeri A, Ugo F, et al. Cardiac arrest in a patient with a mobile right atrial thrombus in transit and amyloidosis. Eur J Echocardiogr. 2008;9:141–2.

    CAS  Google Scholar 

  44. Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis. J Am Coll Cardiol. 2016;68(12):1323–41.

    Article  Google Scholar 

  45. Vitarelli A, Lai S, Petrucci MT, Gaudio C, Capotosto L, Mangieri E, et al. Biventricular assessment of light-chain amyloidosis using 3D speckle tracking echocardiography: differentiation from other forms of myocardial hypertrophy. Int J Cardiol. 2018;271:371–7.

    Article  Google Scholar 

  46. Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography. 2012;29(6):668–77.

    Article  Google Scholar 

  47. Migrino RQ, Harmann L, Woods T, Bright M, Truran S, Hari P. Intraventricular dyssynchrony in light chain amyloidosis: a new mechanism of systolic dysfunction assessed by 3-dimensional echocardiography. Cardiovasc Ultrasound. 2008;6(1):40.

    Article  Google Scholar 

  48. Nemes A, Földeák D, Domsik P, Kalapos A, Kormányos Á, Borbényi Z, et al. Right atrial deformation analysis in cardiac amyloidosis—results from the three-dimensional speckle-tracking echocardiographic MAGYAR-path study. Arq Bras Cardiol. 2018;111:384–91.

    CAS  Google Scholar 

  49. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, et al. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a noninvasive index of myocardial work. Eur Heart J. 2012;33(6):724–33.

    Article  Google Scholar 

  50. Clemmensen TS, Eiskjær H, Mikkelsen F, Granstam S-O, Flachskampf FA, Sørensen J, et al. Left ventricular pressure-strain–derived myocardial work at rest and during exercise in patients with cardiac amyloidosis. J Am Soc Echocardiogr. 2020;33(5):573–82.

    Article  Google Scholar 

  51. Pradel S, Magne J, Jaccard A, Fadel BM, Boulogne C, Salemi VMC, et al. Left ventricular assessment in patients with systemic light chain amyloidosis: a 3-dimensional speckle tracking transthoracic echocardiographic study. Int J Cardiovasc Imaging. 2019;35(5):845–54.

    Article  Google Scholar 

  52. Modesto KM, Dispenzieri A, Gertz M, Cauduro SA, Khandheria BK, Seward JB, et al. Vascular abnormalities in primary amyloidosis. Eur Heart J. 2007;28(8):1019–24.

    Article  Google Scholar 

  53. Nam MCY, Nel K, Senior R, Greaves K. Abnormal myocardial blood flow reserve observed in cardiac amyloidosis. J Cardiovasc Ultrasound. 2016;24(1):64.

    Article  Google Scholar 

  54. Abdelmoneim SS, Bernier M, Bellavia D, Syed IS, Mankad SV, Chandrasekaran K, et al. Myocardial contrast echocardiography in biopsy-proven primary cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2008;9(2):338–41.

    Article  Google Scholar 

  55. Pislaru C, Pellikka PA, Pislaru SV. Wave propagation of myocardial stretch: correlation with myocardial stiffness. Basic Res Cardiol. 2014;109(6):438.

    Article  Google Scholar 

  56. Comenzo RL, Reece D, Palladini G, Seldin D, Sanchorawala V, Landau H, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia. 2012;26(11):2317–25.

    Article  CAS  Google Scholar 

  57. Tuzovic M, Kobayashi Y, Wheeler M, Barrett C, Liedtke M, Lafayette R, et al. Functional cardiac recovery and hematologic response to chemotherapy in patients with light-chain amyloidosis (from the Stanford University Amyloidosis Registry). Am J Cardiol. 2017;120(8):1381–6.

    Article  Google Scholar 

  58. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16.

    Article  CAS  Google Scholar 

  59. Salinaro F, Meier-Ewert HK, Miller EJ, Pandey S, Sanchorawala V, Berk JL, et al. Longitudinal systolic strain, cardiac function improvement, and survival following treatment of light-chain (AL) cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2017;18(9):1057–64.

    Article  Google Scholar 

  60. Giblin GT, Cuddy SAM, González-López E, Sewell A, Murphy A, Dorbala S, et al. Effect of tafamidis on global longitudinal strain and myocardial work in transthyretin cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2022;23:1029–39.

    Article  Google Scholar 

  61. Desai HV, Aronow WS, Peterson SJ, Frishman WH. Cardiac amyloidosis. Cardiol Rev. 2010;18(1):1–11.

    Article  Google Scholar 

  62. Dispenzieri A, Gertz MA, Kyle RA, Lacy MQ, Burritt MF, Therneau TM, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004;22(18):3751–7.

    Article  CAS  Google Scholar 

  63. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30(9):989–95.

    Article  CAS  Google Scholar 

  64. Senapati A, Sperry BW, Grodin JL, Kusunose K, Thavendiranathan P, Jaber W, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart. 2016;102(10):748–54.

    Article  Google Scholar 

  65. Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis. J Am Coll Cardiol. 2012;60(12):1067–76.

    Article  Google Scholar 

  66. Liu Z, Zhang L, Liu M, Wang F, Xiong Y, Tang Z, et al. Myocardial injury in multiple myeloma patients with preserved left ventricular ejection fraction: noninvasive left ventricular pressure-strain myocardial work. Front Cardiovasc Med. 2022;8:782580.

    Article  Google Scholar 

  67. Chacko L, Martone R, Bandera F, Lane T, Martinez-Naharro A, Boldrini M, et al. Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis. Eur Heart J. 2020;41(14):1439–47.

    Article  Google Scholar 

  68. Koyama J, Falk RH. Prognostic significance of strain doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging. 2010;3(4):333–42.

    Article  Google Scholar 

  69. Huntjens PR, Zhang KW, Soyama Y, Karmpalioti M, Lenihan DJ, Gorcsan J. Prognostic utility of echocardiographic atrial and ventricular strain imaging in patients with cardiac amyloidosis. JACC Cardiovasc Imaging. 2021;14(8):1508–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Dantas Tavares de Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Melo, M.D.T., dos Santos Félix, A. (2023). The Echocardiogram in Amyloidosis. In: Xavier de Ávila, D., Villacorta Junior, H. (eds) Amyloidosis and Fabry Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-17759-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17759-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17758-3

  • Online ISBN: 978-3-031-17759-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics