Skip to main content
  • 255 Accesses

Abstract

The wrist is a complex joint allowing complex motion. Injury of the wrist joint may lead to limited function, which not only may have consequences for hobbies but also economic consequences in our current demanding professional lives.

To assess potential causes of limited function or pain in adults, bony landmarks are used for radiographic measurements. In children, radiographic measurements are more complex as the ossification centers may only be partially visible. When it is known how to measure certain angles, also other norm values should be used to define normality and pathology.

In this chapter, six important radiographic measurements, including the scapholunate and capitolunate angle measurements, ulnar variance, radial height, radial inclination, and volar tilt are explained with their normal per age category.

Furthermore, not only angle and height measurements can help define pathology. In children, specifically the epiphysis plays a major role. The cartilage thickness and irregularities may indicate overload. Joint effusion may also be a hint in the direction of intra-articular injury or inflammation. If an assessor is unsure whether the findings are abnormal and complaints are unilateral, measurements of the left and right wrist should be compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slaar A, Bentohami A, Kessels J, Bijlsma TS, van Dijkman BA, Maas M, Wilde JC, Goslings JC, Schep NW. The role of plain radiography in paediatric wrist trauma. Insights Imaging. 2012;3(5):513–7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Williams AA, Lochner HV. Pediatric hand and wrist injuries. Curr Rev Musculoskelet Med. 2013;6(1):18–25.

    Article  PubMed  Google Scholar 

  3. Little JT, Klionsky NB, Chaturvedi A, Soral A, Chaturvedi A. Pediatric distal forearm and wrist injury: an imaging review. Radiographics. 2014;34(2):472–90.

    Article  PubMed  Google Scholar 

  4. Davis KW. Imaging pediatric sports injuries: upper extremity. Radiol Clin North Am. 2010;48(6):1199–211.

    Article  PubMed  Google Scholar 

  5. Sallam AA, Briffa N, Mahmoud SS, Imam MA. Normal wrist development in children and adolescents: a geometrical observational analysis based on plain radiographs. J Pediatr Orthop. 2020;40(9):e860–72.

    Article  PubMed  Google Scholar 

  6. Joyce EA, Farrell T, McMorrow J, Mulholland D, Browne KM, Snow A. Are adult carpal angle measurements applicable to the pediatric population in the trauma setting? Skeletal Radiol. 2018;47(8):1151–6.

    Article  CAS  PubMed  Google Scholar 

  7. Schreibman KL, Freeland A, Gilula LA, Yin Y. Imaging of the hand and wrist. Orthop Clin North Am. 1997;28(4):537–82.

    Article  CAS  PubMed  Google Scholar 

  8. Alt V, Gasnier J, Sicre G. Injuries of the scapholunate ligament in children. J Pediatr Orthop B. 2004;13(5):326–9.

    Article  PubMed  Google Scholar 

  9. Epner RA, Bowers WH, Guilford WB. Ulnar variance—the effect of wrist positioning and roentgen filming technique. J Hand Surg Am. 1982;7(3):298–305.

    Article  CAS  PubMed  Google Scholar 

  10. Hafner R, Poznanski AK, Donovan JM. Ulnar variance in children—standard measurements for evaluation of ulnar shortening in juvenile rheumatoid arthritis, hereditary multiple exostosis and other bone or joint disorders in childhood. Skeletal Radiol. 1989;18(7):513–6.

    Article  CAS  PubMed  Google Scholar 

  11. Goldfarb CA, Strauss NL, Wall LB, Calfee RP. Defining ulnar variance in the adolescent wrist: measurement technique and interobserver reliability. J Hand Surg Am. 2011;36(2):272–7.

    Article  PubMed  Google Scholar 

  12. Steyers CM, Blair WF. Measuring ulnar variance: a comparison of techniques. J Hand Surg Am. 1989;14(4):607–12.

    Article  CAS  PubMed  Google Scholar 

  13. Kox LS, Kraan RBJ, van Dijke KF, Hemke R, Jens S, de Jonge MC, Oei EHG, Smithuis FF, Terra MP, Maas M. Systematic assessment of the growth plates of the wrist in young gymnasts: development and validation of the Amsterdam MRI assessment of the physis (AMPHYS) protocol. BMJ Open Sport Exerc Med. 2018;4(1):e000352.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Linscheid RL. Biomechanics of the distal radioulnar joint. Clin Orthop Relat Res. 1992;(275):46–55.

    Google Scholar 

  15. Shim JI, Im JH, Lee JY, Kang HV, Cho SH. Changes in ulnar variance after a triangular fibrocartilage complex tear. J Wrist Surg. 2019;8(1):30–6.

    Article  PubMed  Google Scholar 

  16. Cerezal L, del Piñal F, Abascal F, García-Valtuille R, Pereda T, Canga A. Imaging findings in ulnar-sided wrist impaction syndromes. Radiographics. 2002;22(1):105–21.

    Article  PubMed  Google Scholar 

  17. De Smet L. Ulnar variance: facts and fiction review article. Acta Orthop Belg. 1994;60(1):1–9.

    PubMed  Google Scholar 

  18. van Leeuwen WF, Oflazoglu K, Menendez ME, Ring D. Negative ulnar variance and Kienböck disease. J Hand Surg Am. 2016;41(2):214–8.

    Article  PubMed  Google Scholar 

  19. Hosseinzadeh P, Olson D, Eads R, Jaglowicz A, Goldfarb CA, Riley SA. Radiologic evaluation of the distal radius indices in early and late childhood. Iowa Orthop J. 2018;38:137–40.

    PubMed Central  PubMed  Google Scholar 

  20. Batra S, Gupta A. The effect of fracture-related factors on the functional outcome at 1 year in distal radius fractures. Injury. 2002;33(6):499–502.

    Article  PubMed  Google Scholar 

  21. Földhazy Z, Törnkvist H, Elmstedt E, Andersson G, Hagsten B, Ahrengart L. Long-term outcome of nonsurgically treated distal radius fractures. J Hand Surg Am. 2007;32(9):1374–84.

    Article  PubMed  Google Scholar 

  22. Goldfarb CA, Yin Y, Gilula LA, Fisher AJ, Boyer MI. Wrist fractures: what the clinician wants to know. Radiology. 2001;219(1):11–28.

    Article  CAS  PubMed  Google Scholar 

  23. Bessho Y, Nakamura T, Nishiwaki M, Nagura T, Matsumoto M, Nakamura M, Sato K. Effect of decrease in radial inclination of distal radius fractures on distal radioulnar joint stability: a biomechanical study. J Hand Surg Eur. 2018;43(9):967–73.

    Article  Google Scholar 

  24. Mann FA, Wilson AJ, Gilula LA. Radiographic evaluation of the wrist: what does the hand surgeon want to know? Radiology. 1992;184(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  25. Ali S, Kaplan S, Kaufman T, Fenerty S, Kozin S, Zlotolow DA. Madelung deformity and Madelung-type deformities: a review of the clinical and radiological characteristics. Pediatr Radiol. 2015;45(12):1856–63.

    Article  PubMed  Google Scholar 

  26. Kozin SH, Zlotolow DA. Madelung deformity. J Hand Surg Am. 2015;40(10):2090–8.

    Article  PubMed  Google Scholar 

  27. Mirabello SC, Rosenthal DI, Smith RJ. Correlation of clinical and radiographic findings in Kienböck’s disease. J Hand Surg Am. 1987;12(6):1049–54.

    Article  CAS  PubMed  Google Scholar 

  28. Arik A, Tanrikulu S, Demiray T, Leblebicioglu G. Radial reference points for measuring palmar tilt and ulnar variance on lateral wrist radiographs. J Hand Surg Asian Pac. 2020;25(1):95–103.

    Article  Google Scholar 

  29. Spannow AH, Stenboeg E, Pfeiffer-Jensen M, Fiirgaard B, Haislund M, Ostergaard M, Andersen NT, Herlin T. Ultrasound and MRI measurements of joint cartilage in healthy children: a validation study. Ultraschall Med. 2011;32(Suppl 1):S110–6.

    PubMed  Google Scholar 

  30. Larché MJ, Roth J. Toward standardized ultrasound measurements of cartilage thickness in children. J Rheumatol. 2010;37(12):2445–7.

    Article  PubMed  Google Scholar 

  31. Spannow AH, Pfeiffer-Jensen M, Andersen NT, Stenbøg E, Herlin T. Inter—and intraobserver variation of ultrasonographic cartilage thickness assessments in small and large joints in healthy children. Pediatr Rheumatol Online J. 2009;7:12.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Spannow AH, Pfeiffer-Jensen M, Andersen NT, Herlin T, Stenbøg E. Ultrasonographic measurements of joint cartilage thickness in healthy children: age—and sex-related standard reference values. J Rheumatol. 2010;37(12):2595–601.

    Article  PubMed  Google Scholar 

  33. Gau CC, Yao TC, Gan ST, Lin SJ, Yeh KW, Chen LC, Ou LS, Lee WI, Wu CY, Huang JL. Age, gender, height and weight in relation to joint cartilage thickness among school-aged children from ultrasonographic measurement. Pediatr Rheumatol Online J. 2021;19(1):71.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Samanta M, Mitra S, Samui PP, Mondal RK, Hazra A, Sabui TK. Evaluation of joint cartilage thickness in healthy children by ultrasound: an experience from a developing nation. Int J Rheum Dis. 2018;21(12):2089–94.

    Article  PubMed  Google Scholar 

  35. Karmazyn B, Bowyer SL, Schmidt KM, Ballinger SH, Buckwalter K, Beam TT, Ying J. US findings of metacarpophalangeal joints in children with idiopathic juvenile arthritis. Pediatr Radiol. 2007;37(5):475–82.

    Article  PubMed  Google Scholar 

  36. Pradsgaard D, Spannow AH, Heuck C, Herlin T. Decreased cartilage thickness in juvenile idiopathic arthritis assessed by ultrasonography. J Rheumatol. 2013;40(9):1596–603.

    Article  PubMed  Google Scholar 

  37. Dobyns JH, Gabel GT. Gymnast’s wrist. Hand Clin. 1990;6(3):493–505.

    Article  CAS  PubMed  Google Scholar 

  38. Kox LS, Kraan RBJ, Mazzoli V, Mens MA, Kerkhoffs G, Nederveen AJ, Maas M. It’s a thin line: development and validation of Dixon MRI-based semi-quantitative assessment of stress-related bone marrow edema in the wrists of young gymnasts and non-gymnasts. Eur Radiol. 2020;30(3):1534–43.

    Article  CAS  PubMed  Google Scholar 

  39. Kraan RBJ, Kox LS, Oostra RJ, Kuijer PPFM, Maas M. The distal radial physis: exploring normal anatomy on MRI enables interpretation of stress related changes in young gymnasts. Eur J Sport Sci. 2020;20(9):1197–205.

    Article  CAS  PubMed  Google Scholar 

  40. Heyworth B, Sullivan N, Hart E, Bauer A, Bae D. Gymnast’s wrist: a retrospective analysis of descriptive epidemiology, clinical & radiologic features, treatment & outcomes. Orthop J Sports Med. 2019;7:2325967119S2325960006.

    Article  Google Scholar 

  41. Marcdante K, Kliegman RM. Nelson essentials of pediatrics. London: Elsevier Health Sciences; 2012.

    Google Scholar 

  42. Schwartz MW. The 5 minute pediatric consult. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  43. Chung C, Coley BD, Martin LC. Rice bodies in juvenile rheumatoid arthritis. Am J Roentgenol. 1998;170(3):698–700.

    Article  CAS  Google Scholar 

  44. Nusman CM, Lavini C, Hemke R, Caan MWA, Schonenberg-Meinema D, Dolman KM, van Rossum MAJ, van den Berg JM, Kuijpers TW, Maas M. Dynamic contrast-enhanced magnetic resonance imaging of the wrist in children with juvenile idiopathic arthritis. Pediatr Radiol. 2017;47(2):205–13.

    Article  PubMed  Google Scholar 

  45. Rieter JF, De Horatio LT, Nusman CM, Müller LSO, Hemke R, Avenarius DF, Van Rossum MA, Malattia C, Maas M, Rosendahl K. The many shades of enhancement: timing of post-gadolinium images strongly influences the scoring of juvenile idiopathic arthritis wrist involvement on MRI. Pediatr Radiol. 2016;46(11):1562–7.

    Article  PubMed  Google Scholar 

  46. Avenarius DF, Ording Müller LS, Rosendahl K. Erosion or normal variant? 4-year MRI follow-up of the wrists in healthy children. Pediatr Radiol. 2016;46(3):322–30.

    Article  PubMed  Google Scholar 

  47. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. Stanford, CA: Stanford University Press; 1959.

    Book  Google Scholar 

  48. Tanner JM, Haealy MJR, Cameron N, Goldstein H. Assessment of skeletal maturity and prediction of adult height (TW3 method). London: WB Saunders; 2001.

    Google Scholar 

  49. Satoh M. Bone age: assessment methods and clinical applications. Clin Pediatr Endocrinol. 2015;24(4):143–52.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Butler P, Mitchell A, Healy JC. Applied radiological anatomy. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Maas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vuurberg, G., de Jaeger, F.J.M., Jens, S., Maas, M. (2023). Wrist. In: Simoni, P., Aparisi Gómez, M.P. (eds) Essential Measurements in Pediatric Musculoskeletal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-17735-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17735-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17734-7

  • Online ISBN: 978-3-031-17735-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics