Skip to main content

Wavelet Guided 3D Deep Model to Improve Dental Microfracture Detection

  • Conference paper
  • First Online:
Applications of Medical Artificial Intelligence (AMAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13540))

Included in the following conference series:

Abstract

Epidemiological studies indicate that microfractures (cracks) are the third most common cause of tooth loss in industrialized countries. An undetected crack will continue to progress, often with significant pain, until the tooth is lost. Previous attempts to utilize cone beam computed tomography (CBCT) for detecting cracks in teeth had very limited success. We propose a model that detects cracked teeth in high resolution (hr) CBCT scans by combining signal enhancement with a deep CNN-based crack detection model. We perform experiments on a dataset of 45 ex-vivo human teeth with 31 cracked and 14 controls. We demonstrate that a model that combines classical wavelet-based features with a deep 3D CNN model can improve fractured tooth detection accuracy in both micro-Computed Tomography (ground truth) and hr-CBCT scans. The CNN model is trained to predict a probability map showing the most likely fractured regions. Based on this fracture probability map we detect the presence of fracture and are able to differentiate a fractured tooth from a control tooth. We compare these results to a 2D CNN-based approach and we show that our approach provides superior detection results. We also show that the proposed solution is able to outperform oral and maxillofacial radiologists in detecting fractures from the hr-CBCT scans. Early detection of cracks will lead to the design of more appropriate treatments and longer tooth retention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynch, C.D., McConnell, R.J.: The cracked tooth syndrome. J.-Can. Dent. Assoc. 68(8), 470–475 (2002)

    Google Scholar 

  2. Ricucci, D., Siqueira, J.F., Jr., Loghin, S., Berman, L.H.: The cracked tooth: histopathologic and histobacteriologic aspects. J. Endodontics 41(3), 343–352 (2015)

    Article  Google Scholar 

  3. Kahler, B., Moule, A., Stenzel, D.: Bacterial contamination of cracks in symptomatic vital teeth. Aust. Endod. J. 26(3), 115–118 (2000)

    Article  Google Scholar 

  4. Iqbal, M., Kim, S., Yoon, F.: An investigation into differential diagnosis of pulp and periapical pain: a PennEndo database study. J. Endodontics 33(5), 548–551 (2007)

    Article  Google Scholar 

  5. Portman-Lewis, S.: An analysis of the out-of-hours demand and treatment provided by a general dental practice rota over a five-year period. Prim. Dent. Care 3, 98–104 (2007)

    Article  Google Scholar 

  6. Krell, K.V., Rivera, E.M.: A six-year evaluation of cracked teeth diagnosed with reversible pulpitis: treatment and prognosis. Br. Dent. J. 204(9) (2008)

    Google Scholar 

  7. Olivieri, J.G., et al.: Outcome and survival of endodontically treated cracked posterior permanent teeth: a systematic review and meta-analysis. J. Endodontics 46(4), 455–463 (2020)

    Article  Google Scholar 

  8. Wu, S., Lew, H.P., Chen, N.N.: Incidence of pulpal complications after diagnosis of vital cracked teeth. J. Endodontics 45(5), 521–525 (2019)

    Article  Google Scholar 

  9. Abbott, P., Leow, N.: Predictable management of cracked teeth with reversible pulpitis. Aust. Dent. J. 54(4), 306–315 (2009)

    Article  Google Scholar 

  10. Opdam, N.J., Roeters, J.J., Loomans, B.A., Bronkhorst, E.M.: Seven-year clinical evaluation of painful cracked teeth restored with a direct composite restoration. J. Endodontics 34(7), 808–811 (2008)

    Article  Google Scholar 

  11. Kang, S.H., Kim, B.S., Kim, Y.: Cracked teeth: distribution, characteristics, and survival after root canal treatment. J. Endodontics 42(4), 557–562 (2016)

    Article  Google Scholar 

  12. Gibbs, J.W.: Cuspal fracture odontalgia. Dent. Digest 60, 158–160 (1954)

    Google Scholar 

  13. Ritchey, B., Mendenhall, R., Orban, B.: Pulpitis resulting from incomplete tooth fracture. Oral Surg. Oral Med. Oral Pathol. 10(6), 665–70 (1957)

    Article  Google Scholar 

  14. Cameron, C.E.: Cracked-tooth syndrome. J. Am. Dent. Assoc. 68(3), 405–411 (1964)

    Article  Google Scholar 

  15. Rivera, E.M., Williamson, A.: Diagnosis and treatment planning: cracked tooth. Tex. Dent. J. 120(3), 278–83 (2003)

    Google Scholar 

  16. Hilton, T.J., et al.: Associations of types of pain with crack-level, tooth-level and patient-level characteristics in posterior teeth with visible cracks: findings from the national dental practice-based research network. J. Dent. 70, 67–73 (2018)

    Article  Google Scholar 

  17. Setzer, F.C., Hinckley, N., Kohli, M.R., Karabucak, B.: A survey of cone-beam computed tomographic use among endodontic practitioners in the united states. J. Endodontics 43(5), 699–704 (2017)

    Article  Google Scholar 

  18. Brady, E., Mannocci, F., Brown, J., Wilson, R., Patel, S.: A comparison of cone beam computed tomography and periapical radiography for the detection of vertical root fractures in nonendodontically treated teeth. Int. Endod. J. 47(8), 735–746 (2014)

    Article  Google Scholar 

  19. Chavda, R., Mannocci, F., Andiappan, M., Patel, S.: Comparing the in vivo diagnostic accuracy of digital periapical radiography with cone-beam computed tomography for the detection of vertical root fracture. J. Endodontics 40(10), 1524–1529 (2014)

    Article  Google Scholar 

  20. Banerji, S., Mehta, S.B., Millar, B.J.: Cracked tooth syndrome. part 1: aetiology and diagnosis. Br. Dent. J. 208(10), 459–463 (2010)

    Article  Google Scholar 

  21. Buty, M., Xu, Z., Gao, M., Bagci, U., Wu, A., Mollura, D.J.: Characterization of lung nodule malignancy using hybrid shape and appearance features. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016. Lecture Notes in Computer Science, vol. 9900, pp. 662–670. Springer, Cham (2016)

    Chapter  Google Scholar 

  22. Lin, W., Hasenstab, K., Moura Cunha, G., Schwartzman, A.: Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  23. Fox, D., Randall, H., Walter, R., Mol, A., Hernandez-Cerdan, P., Paniagua, B., Khan, A.: Development of a standardized method to induce cracks in extracted human teeth. In: 2019 IADR/AADR/CADR General Session (Vancouver, BC, Canada) (2019)

    Google Scholar 

  24. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  25. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

  26. Held, S., Storath, M., Massopust, P., Forster, B.: Steerable wavelet frames based on the Riesz transform. IEEE Trans. Image Process. 19(3), 653–667 (2009)

    Article  MathSciNet  Google Scholar 

  27. Chenouard, N., Unser, M.: 3D steerable wavelets in practice. IEEE Trans. Image Process. 21(11), 4522–4533 (2012)

    Article  MathSciNet  Google Scholar 

  28. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings., International Conference on Image Processing, vol. 3, pp. 444–447. IEEE (1995)

    Google Scholar 

  29. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  30. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  31. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  32. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  33. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgement

This work has been supported by The National Institutes of Health, under Project Number 2R44DE027574-02A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjal Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, P., Vicory, J., McCormick, M., Khan, A., Geha, H., Paniagua, B. (2022). Wavelet Guided 3D Deep Model to Improve Dental Microfracture Detection. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2022. Lecture Notes in Computer Science, vol 13540. Springer, Cham. https://doi.org/10.1007/978-3-031-17721-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17721-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17720-0

  • Online ISBN: 978-3-031-17721-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics