Skip to main content

OOOE: Only-One-Object-Exists Assumption to Find Very Small Objects in Chest Radiographs

  • Conference paper
  • First Online:
Applications of Medical Artificial Intelligence (AMAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13540))

Included in the following conference series:

Abstract

The accurate localization of inserted medical tubes and parts of human anatomy is a common problem when analyzing chest radiographs and something deep neural networks could potentially automate. However, many foreign objects like tubes and various anatomical structures are small in comparison to the entire chest X-ray, which leads to severely unbalanced data and makes training deep neural networks difficult. In this paper, we present a simple yet effective ‘Only-One-Object-Exists’ (OOOE) assumption to improve the deep network’s ability to localize small landmarks in chest radiographs. The OOOE enables us to recast the localization problem as a classification problem and we can replace commonly used continuous regression techniques with a multi-class discrete objective. We validate our approach using a large scale proprietary dataset of over 100K radiographs as well as publicly available RANZCR-CLiP Kaggle Challenge dataset and show that our method consistently outperforms commonly used regression-based detection models as well as commonly used pixel-wise classification methods. Additionally, we find that the method using the OOOE assumption generalizes to multiple detection problems in chest X-rays and the resulting model shows state-of-the-art performance on detecting various tube tips inserted to the patient as well as patient anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Unfortunately, we are not in the position to disclose this data at this time.

References

  1. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1619–1632 (2010)

    Article  Google Scholar 

  2. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: Padchest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Article  Google Scholar 

  3. Chen, C., Liu, M.-Y., Tuzel, O., Xiao, J.: R-CNN for small object detection. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 214–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_14

    Chapter  Google Scholar 

  4. Frid-Adar, M., Amer, R., Greenspan, H.: Endotracheal tube detection and segmentation in chest radiographs using synthetic data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 784–792. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_87

    Chapter  Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  6. Godoy, M.C., Leitman, B.S., De Groot, P.M., Vlahos, I., Naidich, D.P.: Chest radiography in the ICU: Part 1, evaluation of airway, enteric, and pleural tubes. Am. J. Roentgenolo. 198, 536–571 (2012)

    Google Scholar 

  7. Godoy, M.C., Leitman, B.S., De Groot, P.M., Vlahos, I., Naidich, D.P.: Chest radiography in the ICU: Part 2, evaluation of cardiovascular lines and other devices. Am. J. Roentgenol. 198, 572–581 (2012)

    Article  Google Scholar 

  8. Gupta, P.K., Gupta, K., Jain, M., Garg, T.: Postprocedural chest radiograph: impact on the management in critical care unit. Anesth. Essays Res. 8, 139 (2014)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  10. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  11. Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  12. Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks through conditional image generation. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  13. Jeon, S., Nam, S., Oh, S.W., Kim, S.J.: Cross-identity motion transfer for arbitrary objects through pose-attentive video reassembling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 292–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_18

    Chapter  Google Scholar 

  14. Johnson, A.E., et al.: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 6, 1–8 (2019)

    Article  Google Scholar 

  15. Kara, S., Akers, J.Y., Chang, P.D.: Identification and localization of endotracheal tube on chest radiographs using a cascaded convolutional neural network approach. J. Digit. Imaging 34, 898–904 (2021). https://doi.org/10.1007/s10278-021-00463-0

    Article  Google Scholar 

  16. Kónya, S.: 5k trachea bifurcation on chest xray. https://www.kaggle.com/sandorkonya/5k-trachea-bifurcation-on-chest-xray (2021)

  17. Law, M., et al.: Ranzcr-clip - catheter and line position challenge. https://www.kaggle.com/c/ranzcr-clip-catheter-line-classification (2021)

  18. Lee, H., Mansouri, M., Tajmir, S.H., Lev, M.H., Do, S.: A deep-learning system for fully-automated peripherally inserted central catheter (PICC) tip detection. J. Digit. Imaging 31, 393–402 (2017). https://doi.org/10.1007/s10278-017-0025-z

    Article  Google Scholar 

  19. Li, C., Bai, J., Hager, G.D.: A unified framework for multi-view multi-class object pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  20. Li, C., Zeeshan Zia, M., Tran, Q.H., Yu, X., Hager, G.D., Chandraker, M.: Deep supervision with shape concepts for occlusion-aware 3D object parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  21. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  24. Oh, S.W., Kim, S.J.: Approaching the computational color constancy as a classification problem through deep learning. Pattern Recognit. 61, 405–416 (2017)

    Article  Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  28. Sullivan, R., Holste, G., Burkow, J., Alessio, A.: Deep learning methods for segmentation of lines in pediatric chest radiographs. In: Medical Imaging 2020: Computer-Aided Diagnosis (2020)

    Google Scholar 

  29. Tong, K., Wu, Y., Zhou, F.: Recent advances in small object detection based on deep learning: a review. Image Visi. Comput. 97, 103910 (2020)

    Article  Google Scholar 

  30. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  31. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  32. Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K.G., Murphy, K.: Deep learning for chest x-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunhee Nam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nam, G., Kim, T., Lee, S., Kooi, T. (2022). OOOE: Only-One-Object-Exists Assumption to Find Very Small Objects in Chest Radiographs. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2022. Lecture Notes in Computer Science, vol 13540. Springer, Cham. https://doi.org/10.1007/978-3-031-17721-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17721-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17720-0

  • Online ISBN: 978-3-031-17721-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics