Skip to main content

Epigenetic Mediated Regulation of Cancer-Testis/Germline Antigen and Its Implication in Cancer Immunotherapy: A Treasure Map for Future Anticipatory Medicine

  • Chapter
  • First Online:
Epigenetics and Anticipation

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 45))

Abstract

Implication and harnessing innovative therapy in targeting the molecular underpinning of solid tumors are urgently needed. Previous seminal discoveries have elucidated epigenetically regulated cancer-testis antigen expression, showing a strong and durable response in a subset of patients. Cancer testis antigen/germline antigens are an umbrella of proteins usually confined to gametes and trophoblasts and abnormally expressed in several cancers displaying strong immunogenic potential. Substantial evidence suggests that epigenetic players such as DNA methylation play a crucial role in regulating the expression of cancer antigen (CTA) and are therapeutically beneficial in cancer. A combinatorial therapeutic approach encompassing epigenetic modulators targeting mechanistic targets can exhibit therapeutic benefit in clinical settings. This article explores the mechanistic basis of regulation and expression of CTA in response to an epigenetic modulator and its role in sparking the immunotherapeutic efficacy for anticipatory medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simpson, A.J., Caballero, et al.: Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5(8), 615–625 (2005)

    Google Scholar 

  2. Sharma, A., Albahrani, M., Zhang, W., et al.: Epigenetic activation of POTE genes in ovarian cancer. Epigenetics 14(2), 185–197 (2019)

    Google Scholar 

  3. Chen, Q., Zhu, X.Y., Li, Y.Y., et al.: Epigenetic regulation and cancer. Oncol. Rep. 31(2), 523–532 (2014)

    Google Scholar 

  4. Almeida, L.G., Sakabe, N.J., Deoliveira, A.R., et al.: CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucl. Acids Res. 37(suppl_1), D816-D819 (2009)

    Google Scholar 

  5. Fratta, E., Coral, S., Covre, A., Parisi, G., et al.: The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol. Oncol. 5(2), 164–182 (2011)

    Google Scholar 

  6. Caballero, O.L., Chen, Y. T.: Cancer/testis antigens: potential targets for immunotherapy. Innate Immune Regulation and Cancer Immunotherapy, 347–369 (2012)

    Google Scholar 

  7. Rooney, M.S., Shukla, S.A., Wu, C.J., et al.: Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2), 48–61 (2015)

    Google Scholar 

  8. Chen, Y.T., Ross, D.S., Chiu, R., et al.: Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers. PLoS ONE 6(3), e17876 (2011)

    Google Scholar 

  9. Whitehurst, A.W.: Cause and consequence of cancer/testis antigen activation in cancer. Annu. Rev. Pharmacol. Toxicol. 54, 251–272 (2014)

    Google Scholar 

  10. Smith, H.A., Cronk, R.J., Lang, J.M., McNeel, D.G.: Expression and immunotherapeutic targeting of the SSX family of cancer–testis antigens in prostate cancer. Can. Res. 71(21), 6785–6795 (2011)

    Google Scholar 

  11. Li, H., Chiappinelli, K.B., Guzzetta, A.A., et al.: Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5(3), 587 (2014)

    Google Scholar 

  12. Karpf, A.R., Lasek, A.W., Ririe, T.O., et al.: Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine. Mol. Pharmacol. 65(1), 18–27 (2004)

    Google Scholar 

  13. Dubovsky, J.A., McNeel, D.G.: Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor. Prostate 67(16), 1781–1790 (2007)

    Google Scholar 

  14. Toor, A.A., Payne, K.K., Chung, H.M., et al.: Epigenetic induction of adaptive immune response in multiple myeloma: sequential azacitidine and lenalidomide generate cancer testis antigen-specific cellular immunity. Br. J. Haematol. 158(6), 700–711 (2012)

    Google Scholar 

  15. Li, B., Carey, M., Workman, J.L.: The role of chromatin during transcription. Cell 128(4), 707–719 (2007)

    Google Scholar 

  16. Tachibana, M., Sugimoto, K., Nozaki, M., et al.: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16(14), 1779–1791 (2002)

    Google Scholar 

  17. Strahl, B.D., Allis, C.D.: The language of covalent histone modifications. Nature 403(6765), 41–45 (2000)

    Google Scholar 

  18. Oi, S., Natsume, A., Ito, M., et al.: Synergistic induction of NY-ESO-1 antigen expression by a novel histone deacetylase inhibitor, valproic acid, with 5-aza-2′-deoxycytidine in glioma cells. J. Neurooncol. 92(1), 15–22 (2009)

    Google Scholar 

  19. De Smet, C., Lurquin, C., Lethé, B., Martelange, V., Boon, T.: DNA methylation is the primary silencing mechanism for a set of germ line-and tumor-specific genes with a CpG-rich promoter. Mol. Cell. Biol. 19(11), 7327–7335 (1999)

    Google Scholar 

  20. Link, P.A., Gangisetty, O., James, S.R., et al.: Distinct roles for histone methyltransferases G9a and GLP in cancer germline antigen gene regulation in human cancer cells and murine embryonic stem cells. Mol. Cancer Res. 7(6), 851–862 (2009)

    Google Scholar 

  21. Sun, F., Chan, E., Wu, Z., et al.: Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol. Cancer Ther. 8(12), 3191–3202 (2009)

    Google Scholar 

  22. Janssen, B.L., Van de Locht, L.T., Fourkour, A., et al.: Transcription of the MAGE-1 gene and the methylation status of its Ets binding promoter elements: a quantitative analysis in melanoma cell lines using a real-time polymerase chain reaction technique. Melanoma Res. 9(3), 213–222 (1999)

    Google Scholar 

  23. Woloszynska-Read, A., Zhang, W., Yu, J., et al.: Coordinated cancer germline antigen promoter and global DNA hypomethylation in ovarian cancer: association with the BORIS/CTCF expression ratio and advanced stage. Clin. Cancer Res. 17(8), 2170–2180 (2011)

    Google Scholar 

  24. Akers, S.N., Odunsi, K., Karpf, A.R.: Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol. 6(5), 717–732 (2010)

    Google Scholar 

  25. Nguyen, P., Bar-Sela, G., Sun, L., et al.: BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression. Mol. Cell. Biol. 28(21), 6720–6729 (2008)

    Google Scholar 

  26. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., et al.: Epigenetic regulation of human cancer/testis antigen gene, HAGE, in chronic myeloid leukemia. Haematologica (2007)

    Google Scholar 

  27. Bai, S., Grossman, G., Yuan, L., et al.: Hormone control and expression of androgen receptor coregulator MAGE-11 in human endometrium during the window of receptivity to embryo implantation. MHR-Basic Sci. Reprod. Med. 14(2), 107–116 (2008)

    Google Scholar 

  28. Link, P.A., Zhang, W., Odunsi, K., Karpf, A.R.: BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immunity Arch. 13(1), (2013)

    Google Scholar 

  29. Renaud, S., Pugacheva, E.M., Delgado, M.D., et al.: Expression of the CTCF-paralogous cancer-testis gene, brother of the regulator of imprinted sites (BORIS), is regulated by three alternative promoters modulated by CpG methylation and by CTCF and p53 transcription factors. Nucl. Acids Res. 35(21), 7372–7388 (2007)

    Google Scholar 

  30. Heinrich, M.C., Blanke, C.D., Druker, B.J., Corless, C.L.: Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J. Clin. Oncol. 20(6), 1692–1703 (2002)

    Google Scholar 

  31. Oi, S., Natsume, A., Ito, M., et al.: Synergistic induction of NY-ESO-1 antigen expression by a novel histone deacetylase inhibitor, valproic acid, with 5-aza-2’-deoxycytidine in glioma cells. J. Neurooncol. 92(1), 15–22 (2009)

    Google Scholar 

  32. Caballero, O.L., Chen, Y.T.: Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 100(11), 2014–2021 (2009)

    Google Scholar 

  33. De Smet, C., Lurquin, C., Lethé, B., et al.: DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell. Biol. 19(11), 7327–7335 (1999)

    Google Scholar 

  34. Link, P.A., Gangisetty, O., James, S.R., Woloszynska-Read, A., Tachibana, M., Shinkai, Y., Karpf, A.R.: Distinct roles for histone methyltransferases G9a and GLP in cancer germline antigen gene regulation in human cancer cells and murine embryonic stem cells. Mole. Cancer Res. MCR 7(6), 851–862 (2009)

    Google Scholar 

  35. Woloszynska-Read, A., Zhang, W., Yu, J., et al.: Coordinated cancer germline antigen promoter and global DNA hypomethylation in ovarian cancer: association with the BORIS/CTCF expression ratio and advanced stage. Clin. Cancer Res. Official J. Am. Assoc. Cancer Res. 17(8), 2170–2180 (2011)

    Google Scholar 

  36. Yarchoan, M., Johnson, B.A., 3rd., Lutz, E.R., Laheru, D.A., Jaffee, E.M.: Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17(4), 209–222 (2017)

    Google Scholar 

  37. Lee, H.E., Chae, S.W., Lee, Y.J., et al.: Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br. J. Cancer 99(10), 1704–1711 (2008)

    Google Scholar 

  38. Tay, R.E., Richardson, E.K., Toh, H.C.: Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene. Ther. 28(1), 5–17 (2021)

    Google Scholar 

  39. Sharma, P., Allison, J.P.: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2), 205–214 (2015)

    Google Scholar 

  40. Brahmer, J.R., Tykodi, S.S., Chow, L.Q., et al.: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012)

    Google Scholar 

  41. Topalian, S.L., Hodi, F.S., Brahmer, J.R., et al.: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012)

    Google Scholar 

  42. Cohen, C.J., Gartner, J.J., Horovitz-Fried, M., et al.: Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 2015(125), 3981–3991 (2015)

    Google Scholar 

  43. Lennerz, V., Fatho, M., Gentilini, C., et al.: The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc. Natl. Acad. Sci. USA 2005(102), 16013–16018 (2005)

    Google Scholar 

  44. Heemskerk, B., Kvistborg, P., Schumacher, T.N.: The cancer antigenome. EMBO J. 32(2), 194–203 (2013)

    Google Scholar 

  45. Yarchoan, M., Johnson, B.A., 3rd., Lutz, E.R., et al.: Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17(4), 209–222 (2017)

    Google Scholar 

  46. Slingluff, C.L., Jr.: The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J. (Sudbury Mass.) 17(5), 343–350 (2011)

    Google Scholar 

  47. Wang, W., Green, M., Choi, J.E., et al.: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569(7755), 270–274 (2019)

    Google Scholar 

  48. Odunsi, K., Matsuzaki, J., Karbach, J., et al.: Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc. Natl. Acad. Sci. USA 109(15), 5797–5802 (2012)

    Google Scholar 

  49. Zhang, X.M., Zhang, Y.F., Huang, Y., et al.: The antitumor immune response induced by a combination of MAGE-3/MAGE-n-derived peptides. Oncol. Rep. 20(1), 245–252 (2008)

    Google Scholar 

  50. Walter, S., Weinschenk, T., Stenzl, A., et al.: Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18(8), 1254–1261 (2012)

    Google Scholar 

  51. Gjerstorff, M.F., Andersen, M.H., Ditzel, H.J.: Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6(18), 15772 (2015)

    Google Scholar 

  52. Thomas, R., Al-Khadairi, G., Roelands, J., et al.: NY-ESO-1 based immunotherapy of cancer: current perspectives. Front. Immunol. 9, 947 (2018)

    Google Scholar 

  53. Kageyama, S., Wada, H., Muro, K., et al.: Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients. J. Transl. Med. 11(1), 1–10 (2013)

    Google Scholar 

  54. Khong, H., Overwijk, W.W.: Adjuvants for peptide-based cancer vaccines. J. Immunother. Cancer 4, 56 (2016)

    Google Scholar 

  55. Kundu, S., Ray, M.D., Sharma, A.: Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J. Genet. Genom. 48(3), 184–197 (2021)

    Google Scholar 

  56. Jit, B.P., Qazi, S., Arya, R., et al.: An immune epigenetic insight to COVID-19 infection. Epigenomics 13(06), 465–480 (2021)

    Google Scholar 

  57. Brocks, D., Schmidt, C.R., Daskalakis, M., et al.: DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49(7), 1052–1060 (2017)

    Google Scholar 

  58. Topper, M.J., Vaz, M., Chiappinelli, K.B., et al.: Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171(6), 1284–1300 (2017)

    Google Scholar 

  59. Li, A., Chen, P., Leng, Y., Kang, J.: Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3–COX2-dependent pathway. Oncogene 37(45), 5952–5966 (2018)

    Google Scholar 

  60. Wischnewski, F., Pantel, K., Schwarzenbach, H.: Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1,-A2,-A3, and-A12 in human cancer cells. Mol. Cancer Res. 4(5), 339–349 (2006)

    Google Scholar 

  61. Atanackovic, D., Luetkens, T., Kloth, B., et al.: Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am. J. Hematol. 86(11), 918–922 (2011)

    Google Scholar 

  62. Kakimi, K., Karasaki, T., Matsushita, H., et al.: Advances in personalized cancer immunotherapy. Breast Cancer 24(1), 16–24 (2017)

    Google Scholar 

  63. Sadelain, M., Rivière, I., Riddell, S.: Therapeutic T cell engineering. Nature 545(7655), 423–431 (2017)

    Google Scholar 

  64. Ding, K., Wang, X.M., Fu, R., et al.: PRAME gene expression in acute leukemia and its clinical significance. Cancer Biol. Med. 9(1), 73 (2012)

    Google Scholar 

  65. Maus, M.V., Plotkin, J., Jakka, G., et al.: An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mole. Therapy-Oncol. 3, 16023 (2016)

    Google Scholar 

  66. Maruta, M., Ochi, T., Tanimoto, K., et al.: Direct comparison of target-reactivity and cross-reactivity induced by CAR-and BiTE-redirected T cells for the development of antibody-based T-cell therapy. Sci. Rep. 9(1), 1–13 (2019)

    Google Scholar 

  67. Fratta, E., Coral, S., Covre, A., et al.: The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol. Oncol. 5(2), 164–182 (2011)

    Google Scholar 

  68. Chang, A.Y., Dao, T., Gejman, R.S., et al.: A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J. Clin. Investig. 127(7), 2705–2718 (2017)

    Google Scholar 

  69. Zhang, Y., Zhang, Y., Zhang, L.: Expression of cancer–testis antigens in esophageal cancer and their progress in immunotherapy. J. Cancer Res. Clin. Oncol. 145(2), 281–291 (2019)

    Google Scholar 

  70. Robbins, P.F., Morgan, R.A., Feldman, S.A., et al.: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29(7), 917 (2011)

    Google Scholar 

  71. Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392(6673), 245–252 (1998)

    Google Scholar 

  72. Coosemans, A., Baert, T., Vergote, I.: A view on dendritic cell immunotherapy in ovarian cancer: how far have we come? Facts Views Vis. ObGyn 7(1), 73 (2015)

    Google Scholar 

  73. Ahmed, N., Brawley, V.S., Hegde, M., et al.: Human epidermal growth factor receptor 2 (HER2)–specific chimeric antigen receptor–modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33(15), 1688 (2015)

    Google Scholar 

  74. Jakobsen, M.K., Gjerstorff, M.F.: CAR T-cell cancer therapy targeting surface cancer/testis antigens. Front. Immunol. 11, 1568 (2020)

    Google Scholar 

  75. Licht, J.D., Bennett, R.L.: Leveraging epigenetics to enhance the efficacy of immunotherapy. Clin. Epigenetics 13(1), 115 (2021)

    Google Scholar 

  76. Wrangle, J., Wang, W., Koch, A., et al.: Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget 4(11), 2067–2079 (2013). https://doi.org/10.18632/oncotarget.1542

  77. Gray, J.E., Saltos, A., Tanvetyanon, T., et al.: Phase I/Ib study of pembrolizumab plus vorinostat in advanced/metastatic non-small cell lung cancer. Clin. Cancer Res. Official J. Am. Assoc. Cancer Res. 25(22), 6623–6632 (2019). https://doi.org/10.1158/1078-0432.CCR-19-1305

    Article  Google Scholar 

  78. Ernst, T., Chase, A.J., Score, J., et al.: Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42(8), 722–726 (2010). https://doi.org/10.1038/ng.621

    Article  Google Scholar 

  79. Hellman, M.D., et al.: Efficacy/safety of entinostat (ENT) and pembrolizumab (PEMBRO) in NSCLC patients previously treated with anti-PD-(L)1 therapy. In: 19th World Conference on Lung Cancer (2018)

    Google Scholar 

  80. Panda, A., de Cubas, A.A., Stein, M., et al.: Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight 3(16), e121522 (2018)

    Google Scholar 

  81. Chiappinelli, K.B., Strissel, P.L., Desrichard, A., et al.: Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5), 974–986 (2015)

    Google Scholar 

  82. Di Giacomo, A.M., Covre, A., Finotello, F., et al.: GuadecitabinePlus ipilimumab in unresectable melanoma: the NIBIT-M4 clinical trial. Clin. Cancer Res. Official J. Am. Assoc. Cancer Res. 25(24), 7351–7362 (2019)

    Google Scholar 

  83. Ghoneim, H.E., Fan, Y., Moustaki, A., et al.: De Novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170(1), 142-157.e19 (2017)

    Google Scholar 

  84. Bennett, R.L., Licht, J.D.: Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol. 58, 187–207 (2018). https://doi.org/10.1146/annurev-pharmtox-010716-105106

    Article  Google Scholar 

  85. Llopiz, D., Ruiz, M., Villanueva, L., et al.: Enhanced antitumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunol. Immunother. CII 68(3), 379–393 (2019)

    Google Scholar 

  86. Ghoshal, K., Datta, J., Majumder, S., et al.: 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol. Cell. Biol. 25(11), 4727–4741 (2005)

    Google Scholar 

  87. Odunsi, K., Matsuzaki, J., James, S.R.: Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol. Res. 2(1), 37–49 (2014). https://doi.org/10.1158/2326-6066.CIR-13-0126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R., Jit, B.P., Sharma, A. (2022). Epigenetic Mediated Regulation of Cancer-Testis/Germline Antigen and Its Implication in Cancer Immunotherapy: A Treasure Map for Future Anticipatory Medicine. In: Nadin, M. (eds) Epigenetics and Anticipation. Cognitive Systems Monographs, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-031-17678-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17678-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17677-7

  • Online ISBN: 978-3-031-17678-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics