Skip to main content

Abuse Response of Batteries Subjected to Mechanical Impact

  • Chapter
  • First Online:
Computer Aided Engineering of Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 62))

Abstract

Electrochemical and thermal models to simulate nominal performance and abuse response of lithium-ion cells and batteries have been reported widely in the literature. Studies on mechanical failure of cell components and how such events interact with the electrochemical and thermal response are relatively less common. This chapter outlines a framework developed under the Computer Aided Engineering for Batteries program to couple failure modes resulting from external mechanical loading to the onset and propagation of electrochemical and thermal events that follow. Starting with a scalable approach to implement failure criteria based on thermal, mechanical, and electrochemical thresholds, we highlight the practical importance of these models using case studies at the cell and module level. The chapter also highlights a few gaps in our understanding of the comprehensive response of batteries subjected to mechanical crash events, the stochastic nature of some of these failure events, and our approach to build safety maps that help improve robustness of battery design by capturing the sensitivity of some key design parameters to heat generation rates under different mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hollmotz L, Hackmann M (2006) Lithium ion batteries for hybrid and electric vehicles – risks, requirements and solutions out of the crash safety point of view. EVS 22. Paper 11-0269, pp 1–9

    Google Scholar 

  2. Kermani G, Sahraei E (2017) Review: characterization and modeling of the mechanical properties of lithium-ion batteries. Energies 10(11):1730. https://doi.org/10.3390/en10111730

    Article  Google Scholar 

  3. Bartolo M (2012) EV vehicle safety. Electric vehicle safety technical symposium, pp 6–15

    Google Scholar 

  4. Doughty DH (2012) Vehicle battery safety roadmap guidance, NREL Report No. SR-5400-54404

    Google Scholar 

  5. Deng J, Bae C, Marcicki J, Masias A, Miller T (2018) Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat Energy 3(4):261–266. https://doi.org/10.1038/s41560-018-0122-3

    Article  Google Scholar 

  6. Sahraei E, Meier J, Wierzbicki T (2014) Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. J Power Sources 247:503–516. https://doi.org/10.1016/j.jpowsour.2013.08.056

    Article  CAS  Google Scholar 

  7. Marcicki J, Zhu M, Bartlett A, Yang XG, Chen Y, Miller I, L’Eplattenier T, Caldichoury P (2017) A simulation framework for battery cell impact safety modeling using LS-DYNA. J Electrochem Soc 164(1):A6440–A6448

    Article  CAS  Google Scholar 

  8. Zhang C, Santhanagopalan S, Sprague MA, Pesaran AA (2015) A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests. J Power Sources 298:309. https://doi.org/10.1016/j.jpowsour.2015.08.049

    Article  CAS  Google Scholar 

  9. Cannarella J, Liu X, Leng CZ, Sinko PD, Gor GY, Arnold CB (2014) Mechanical properties of a battery separator under compression and tension. J Electrochem Soc 161(11):F3117–F3122. https://doi.org/10.1149/2.0191411jes

    Article  CAS  Google Scholar 

  10. Sahraei E, Campbell J, Wierzbicki T (2012) Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions. J Power Sources 220:360–372. https://doi.org/10.1016/j.jpowsour.2012.07.057

    Article  CAS  Google Scholar 

  11. Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions. J Power Sources 248:789–808

    Article  CAS  Google Scholar 

  12. Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions. J Power Sources 245:609–623

    Article  CAS  Google Scholar 

  13. Luo H, Juner Z, Sahraei E, Xia Y (2018) Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings. RSC Adv 8:3996–4005

    Article  CAS  Google Scholar 

  14. Sheidaei A, Xiao X, Huang X, Hitt J (2011) Mechanical behavior of a battery separator in electrolyte solutions. J Power Sources 196(20):8728–8734

    Article  CAS  Google Scholar 

  15. Sahraei E, Hill R, Wierzbicki T (2012) Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. J Power Sources 201:307–321. https://doi.org/10.1016/j.jpowsour.2011.10.094

    Article  CAS  Google Scholar 

  16. Sahraei E, Kahn M, Meier J, Wierzbicki T (2015) Modelling of cracks developed in lithium-ion cells under mechanical loading. RSC Adv 5(98):80369–80380. https://doi.org/10.1039/c5ra17865g

    Article  CAS  Google Scholar 

  17. Xu J, Liu B, Hu D (2016) State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries. Sci Rep 6:1–11. https://doi.org/10.1038/srep21829

    Article  CAS  Google Scholar 

  18. Xu J, Liu B, Wang X, Hu D (2016) Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies. Appl Energy 172:180–189

    Article  Google Scholar 

  19. Fink K, Santhanagopalan S, Hartig J, Cao L (2019) Characterization of aged Li-ion battery components for direct recycling process design. J Electrochem Soc 166(15):A3775–A3783. https://doi.org/10.1149/2.0781915jes

    Article  CAS  Google Scholar 

  20. Steele LAM, Lamb J, Gorsso C, Quintana J, Torres-Castro J, Stanley L (2017) Battery safety testing. In: 2017 vehicle technologies office energy storage annual merit review, p ES203

    Google Scholar 

  21. Dixon B, Mason A, Sahraei E (2018) Effects of electrolyte, loading rate and location of indentation on mechanical integrity of li-ion pouch cells. J Power Sources 396:412–420. https://doi.org/10.1016/J.JPOWSOUR.2018.06.042

    Article  CAS  Google Scholar 

  22. Zhang X, Sahraei E, Wang K (Sep. 2016) Deformation and failure characteristics of four types of lithium-ion battery separators. J Power Sources 327:693–701

    Article  CAS  Google Scholar 

  23. Luo H, Jiang X, Xia Y, Zhou Q (2015) Fracture mode analysis of lithium-ion battery under mechanical loading. In: ASME 2015 International mechanical engineering congress and exposition. Nov 13, 2015. https://doi.org/10.1115/IMECE2015-52595

    Chapter  Google Scholar 

  24. Sahraei E, Kahn M, Meier J, Wierzbicki T (2015) Modelling of cracks developed in lithium-ion cells under mechanical loading. RSC Adv 5(98):80369–80380. https://doi.org/10.1039/C5RA17865G

    Article  CAS  Google Scholar 

  25. Sahraei E, Wierzbicki T, Hill R, Luo H (2010) Crash safety of lithium-ion batteries towards development of a computational model. In: SAE technical paper. pp. 2010–01–1078

    Google Scholar 

  26. Xia Y, Wierzbicki T, Sahraei E, Zhang X (2014) Damage of cells and battery packs due to ground impact. J Power Sources 267:78–97. https://doi.org/10.1016/j.jpowsour.2014.05.078

    Article  CAS  Google Scholar 

  27. Avdeev I, Gilaki M (2014) Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact. J Power Sources 271:382–391. https://doi.org/10.1016/j.jpowsour.2014.08.014

    Article  CAS  Google Scholar 

  28. Kermani G, Keshavarzi MM, Sahraei E (2021) Deformation of lithium-ion batteries under axial loading: analytical model and representative volume element. Energy Rep 7:2849–2861

    Article  Google Scholar 

  29. Liu B et al (2019) Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater 24:85–112. https://doi.org/10.1016/j.ensm.2019.06.036

    Article  Google Scholar 

  30. Zhang C, Santhanagopalan S, Sprague MA, Pesaran AA (2015) A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests. J Power Sources 298:309–321. https://doi.org/10.1016/j.jpowsour.2015.08.049

    Article  CAS  Google Scholar 

  31. Zhang C, Santhanagopalan S, Sprague MA, Pesaran AA (2015) Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse. J Power Sources 290:102. https://doi.org/10.1016/j.jpowsour.2015.04.162

    Article  CAS  Google Scholar 

  32. Newman J, Tiedemann W (1975) Porous electrode theory with battery applications. AICHE J 21(1):25–41

    Article  CAS  Google Scholar 

  33. C. Zhang, S. Santhanagopalan, A. Pesaran, E. Sharaei, and T. Wierzbicki, Coupling of mechanical behavior of lithium ion cells to electrochemical-thermal models for battery crush, Presented at the Annual Merit Review of the Vehicle Technologies Office, Washington D.C., June 2015

    Google Scholar 

  34. Zhang C, Santhanagopalan S, Sprague MA, Pesaran AA (2016) Simultaneously coupled mechanical-electrochemical-thermal simulation of lithium-ion cells. ECS Trans 72(24):9. https://doi.org/10.1149/07224.0009ecst

    Article  CAS  Google Scholar 

  35. Zhang C, Xu J, Cao L, Wu Z, Santhanagopalan S (2017) Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries. J Power Sources 357:126. https://doi.org/10.1016/j.jpowsour.2017.04.103

    Article  CAS  Google Scholar 

  36. Sahraei E, Bosco E, Dixon B, Lai B (2016) Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios. J Power Sources 319:56–65

    Article  CAS  Google Scholar 

  37. S. Santhanagopalan, C. Zhang, C. Yang, A. Wu, L. Cao, and A. A. Pesaran, Modeling mechanical failure in lithium-lon batteries, Presented at the Annual Merit Review of the Vehicle Technologies Office, Washington D.C., June 2017

    Google Scholar 

  38. Wang H, Simunovic S, Maleki H, Howard JN, Hallmark JA (2016) Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit. J Power Sources 306:424–430

    Article  CAS  Google Scholar 

  39. Sahraei E, Campbell J, Wierzbicki T (Dec. 2012) Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions. J Power Sources 220:360–372. https://doi.org/10.1016/J.JPOWSOUR.2012.07.057

    Article  CAS  Google Scholar 

  40. Wierzbicki T, Sahraei E (2013) Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J Power Sources 241:467–476

    Article  CAS  Google Scholar 

  41. J. O. Hallquist, Livermore software technology corporation, LS-DYNA theory manual, 2006

    Google Scholar 

  42. Borrvall T, Erhart T (2006) A user-defined element interface in LS-DYNA v971, No 4, pp 25–34

    Google Scholar 

  43. Marcicki J et al (2016) Battery abuse case study analysis using LS-DYNA. In: Proceedings of the 14th LS-DYNA user conference, Dearborn, pp 12–14

    Google Scholar 

  44. Zhu J, Zhang X, Sahraei E, Wierzbicki T (Dec. 2016) Deformation and failure mechanisms of 18650 battery cells under axial compression. J Power Sources 336:332–340. https://doi.org/10.1016/J.JPOWSOUR.2016.10.064

    Article  CAS  Google Scholar 

  45. Yin H, Ma S, Li H, Wen G, Santhanagopalan S, Zhang C (2021) Modeling strategy for progressive failure prediction in lithium-ion batteries under mechanical abuse. eTransportation 7:100098. https://doi.org/10.1016/j.etran.2020.100098

    Article  Google Scholar 

  46. Coman PT, Darcy EC, Veje CT, White RE (2017) Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations. J Electrochem Soc 164(4):A587–A593. https://doi.org/10.1149/2.0341704jes

    Article  CAS  Google Scholar 

  47. Zhang C, Waksmanski N, Wheeler VM, Pan E, Larsen RE (2015) The effect of photodegradation on effective properties of polymeric thin films: a micromechanical homogenization approach. Int J Eng Sci 94:1–22

    Article  Google Scholar 

  48. Zhang C, Santhanagopalan S, Sprague MA, Pesaran AA (2015) Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse. J Power Sources 290:102–113. https://doi.org/10.1016/j.jpowsour.2015.04.162

    Article  CAS  Google Scholar 

  49. Mallarapu A, Kim J, Carney K, DuBois P, Santhanagopalan S (2020) Modeling extreme deformations in lithium ion batteries. eTransportation, p 100065. https://doi.org/10.1016/j.etran.2020.100065

  50. Smith K, Wang C-Y (2006) Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles. J Power Sources 161:628–639. https://doi.org/10.1016/j.jpowsour.2006.03.050

    Article  CAS  Google Scholar 

  51. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143(6):1890–1903. https://doi.org/10.1149/1.1836921

    Article  Google Scholar 

  52. Gu WB, Wang C-Y (2000) Thermal and electrochemical coupled modeling of a lithium-ion cell, in lithium batteries. ECS Proc 99–25(1):748–762

    Google Scholar 

  53. Mai W, Colclasure A, Smith K (2019) A reformulation of the pseudo2d battery model coupling large electrochemical-mechanical deformations at particle and electrode levels. J Electrochem Soc 166(8):A1330–A1339. https://doi.org/10.1149/2.0101908jes

    Article  CAS  Google Scholar 

  54. Kim G-H, Smith K, Lee K-J, Santhanagopalan S, Pesaran A (2011) Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. J Electrochem Soc 158(8):A955. https://doi.org/10.1149/1.3597614

    Article  CAS  Google Scholar 

  55. Ramadass P, Haran B, Gomadam PM, White RE, Popov BN (2004) Development of first principles capacity fade model for Li-ion cells. J Electrochem Soc 151(2):A196. https://doi.org/10.1149/1.1634273

    Article  CAS  Google Scholar 

  56. Zhao W, Luo G, Wang C-Y (2015) Modeling nail penetration process in large-format Li-ion cells. J Electrochem Soc 162(1):A207–A217. https://doi.org/10.1149/2.1071501jes

    Article  CAS  Google Scholar 

  57. Zhao W, Luo G, Wang C-Y (2015) Modeling internal shorting process in large-format Li-ion cells. J Electrochem Soc 162(7):A1352–A1364. https://doi.org/10.1149/2.1031507jes

    Article  CAS  Google Scholar 

  58. Santhanagopalan S, Ramadass P, Zhang JZ (2009) Analysis of internal short-circuit in a lithium ion cell. J Power Sources 194(1):550. https://doi.org/10.1016/j.jpowsour.2009.05.002

    Article  CAS  Google Scholar 

  59. Kim J, Mallarapu A, Santhanagopalan S (2020) Transport processes in a Li-ion cell during an internal short-circuit. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ab995d

  60. Fang W, Ramadass P, Zhang Z (2014) Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model. J Power Sources 248:1090–1098. https://doi.org/10.1016/j.jpowsour.2013.10.004

    Article  CAS  Google Scholar 

  61. Kim G-H, Smith K, Pesaran AA (2009) Lithium-ion battery safety study using multi-physics internal short-circuit model

    Google Scholar 

  62. NREL High Performance Computing (2015) http://hpc.nrel.gov/users/systems/peregrine

  63. Blender (2016) Blender – a 3D modelling and rendering package, 2016. www.blender.org

  64. Ayachit U (2015) The ParaView guide: a parallel visualization application, Kitware

    Google Scholar 

  65. Wald I, Woop S, Benthin C, Johnson GS, Ernst M (2014) Embree – a kernel framework for efficient CPU ray tracing. ACM Trans Graph, pp 1–8

    Google Scholar 

  66. Cignoni P, Callieri M, Corsini M, Dellepiane M (2008) MeshLab: an open-source mesh processing tool. In: European Italian conference, pp 129–136

    Google Scholar 

  67. No Title. https://www.youtube.com/watch?v=Hb5JWbcrVEY&feature=youtu.be

  68. Santhanagopalan S (2017) Efficient simulation and abuse modeling of mechanical-electrochemical-thermal phenomena in lithium-ion batteries. In: Vehicle Technologies Office, Annual Merit Review, p ES298

    Google Scholar 

  69. Zhang Q, White RE (2008) Capacity fade analysis of a lithium ion cell. J Power Sources 179(2):793–798. https://doi.org/10.1016/J.JPOWSOUR.2008.01.028

    Article  CAS  Google Scholar 

  70. Dai Y, Cai L, White RE (2014) Simulation and analysis of stress in a Li-ion battery with a blended LiMn2O4 and LiNi0.8Co0.15Al 0.05O2 cathode. J Power Sources 247:365–376. https://doi.org/10.1016/j.jpowsour.2013.08.113

    Article  CAS  Google Scholar 

  71. Maleki H, Al Hallaj S, Selman JR, Dinwiddie RB, Wang H (Mar. 1999) Thermal properties of lithium-ion battery and components. J Electrochem Soc 146(3):947–954. https://doi.org/10.1149/1.1391704

    Article  CAS  Google Scholar 

  72. Zhang YC, Briat O, Deletage J-Y, Martin C, Gager G, Vinassa J-M (2018) Characterization of external pressure effects on lithium-ion pouch cell. In: 2018 IEEE international conference on industrial technology, pp 2055–2059, https://doi.org/10.1109/ICIT.2018.8352505

  73. Mohtat P, Lee S, Siegel JB, Stefanopoulou AG (2021) Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors. J Electrochem Soc 168(10):100520. https://doi.org/10.1149/1945-7111/ac2d3e

    Article  CAS  Google Scholar 

  74. Wu Z, Cao L, Hartig J, Santhanagopalan S (Jul. 2017) (Invited) effect of aging on mechanical properties of lithium ion cell components. ECS Trans 77(11):199–208. https://doi.org/10.1149/07711.0199ecst

    Article  CAS  Google Scholar 

  75. Pathak M, Sonawane D, Lawder MT, Subramanian V (2015) Robust fail-safe iteration free solvers for battery models. ECS Meet Abstr MA2015-02, 172. https://doi.org/10.1149/ma2015-02/2/172

  76. Rodríguez A, Plett GL, Trimboli MS (2017) Fast computation of the electrolyte-concentration transfer function of a lithium-ion cell model. J Power Sources 360:642–645. https://doi.org/10.1016/J.JPOWSOUR.2017.06.025

    Article  Google Scholar 

  77. Mao J, Tiedemann W, Newman J (2014) Simulation of temperature rise in Li-ion cells at very high currents. J Power Sources 271:444–454. https://doi.org/10.1016/j.jpowsour.2014.08.033

    Article  CAS  Google Scholar 

  78. Kim J, Mallarapu A, Santhanagopalan S, Newman J (2023) Efficient numerical treatment for solid-phase diffusions for simulations of Li-ion batteries. J Power Sources 556:232413. https://doi.org/10.1016/j.jpowsour.2022.232413

  79. Hutzenlaub T, Thiele S, Paust N, Spotnitz R, Zengerle R, Walchshofer C (Jan. 2014) Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode. Electrochim Acta 115:131–139. https://doi.org/10.1016/J.ELECTACTA.2013.10.103

    Article  CAS  Google Scholar 

  80. Kim G-H, Pesaran A, Spotnitz R (2007) A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources 170(2):476–489. https://doi.org/10.1016/j.jpowsour.2007.04.018

    Article  CAS  Google Scholar 

  81. Hatchard TD, MacNeil DD, Basu A, Dahn JR (2001) Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc 148(7):A755. https://doi.org/10.1149/1.1377592

    Article  CAS  Google Scholar 

  82. Golubkov AW et al (2015) Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge. RSC Adv 5(70):57171–57186. https://doi.org/10.1039/C5RA05897J

    Article  CAS  Google Scholar 

  83. Ouyang D, Chen M, Wang J (2019) Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim 136:2281–2294. https://doi.org/10.1007/s10973-018-7899-y

    Article  CAS  Google Scholar 

  84. Liu X et al (2018) Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2(10):2047–2064. https://doi.org/10.1016/j.joule.2018.06.015

    Article  CAS  Google Scholar 

  85. Wang Z, Ouyang D, Chen M, Wang X, Zhang Z, Wang J (2019) Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim 136:2239. https://doi.org/10.1007/s10973-018-7899-y

    Article  CAS  Google Scholar 

  86. Kim J, Mallarapu A, Finegan DP, Santhanagopalan S (2021) Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway. J Power Sources 489:229496

    Article  CAS  Google Scholar 

  87. Energy Storage Integration Council (ESIC) Energy Storage Reference Fire Hazard Mitigation Analysis. EPRI, Palo Alto, CA: 2019. 3002017136

    Google Scholar 

  88. Walker W, Finegan DP, Shearing PR, Battery failure databank (Last accessed October 2022). https://www.nrel.gov/transportation/battery-failure.html

  89. Finegan DP et al (2021) The application of data-driven methods and physics-based learning for improving battery safety. Joule 5(2):316–329. https://doi.org/10.1016/J.JOULE.2020.11.018

    Article  Google Scholar 

  90. Feng X, Pan Y, He X, Wang L, Ouyang M (Aug. 2018) Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage 18:26–39. https://doi.org/10.1016/J.EST.2018.04.020

    Article  Google Scholar 

  91. Hu G, Huang P, Bai Z, Wang Q, Qi K (Nov. 2021) Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. eTransportation 10:100140. https://doi.org/10.1016/J.ETRAN.2021.100140

    Article  Google Scholar 

  92. Barnett B, Ofer D, Sriramulu S, Stringfellow R (2012) Lithium-ion batteries – safety. In: Encyclopedia of Sustainability Science and Technology, Meyers RA (ed). Springer, New York

    Google Scholar 

  93. Srinivasan R, Demirev PA, Carkhuff BG, Santhanagopalan S, Jeevarajan JA, Barrera TP (2020) Review—thermal safety management in Li-ion batteries: current issues and perspectives. J Electrochem Soc 167(14):140516. https://doi.org/10.1149/1945-7111/ABC0A5

    Article  CAS  Google Scholar 

  94. Kim J, Mallarapu A, Yang C, Santhanagopalan S (2021) Modeling cell venting and gas-phase reactions in lithium-ion cells during thermal runaway. Presented at the AABC 2021.

    Google Scholar 

  95. Torres-Castro L, Kurzawski A, Hewson J, Lamb J (2020) Passive mitigation of cascading propagation in multi-cell lithium ion batteries. J Electrochem Soc 167(9):090515. https://doi.org/10.1149/1945-7111/ab84fa

    Article  CAS  Google Scholar 

  96. Kamyab N, Coman PT, Reddy SKM, Santhanagopalan S, White RE (2020) Mathematical model for Li-s cell with shuttling-induced capacity loss approximation. J Electrochem Soc 167(13):090534. https://doi.org/10.1149/1945-7111/abbbbf

    Article  CAS  Google Scholar 

  97. Sethuraman VA, Srinivasan V, Bower AF, Guduru PR (2010) In situ measurements of stress-potential coupling in lithiated silicon. J Electrochem Soc 157(11):A1253. https://doi.org/10.1149/1.3489378

    Article  CAS  Google Scholar 

  98. Sethuraman VA, Hardwick LJ, Srinivasan V, Kostecki R (2010) Surface structural disordering in graphite upon lithium intercalation/deintercalation. J Power Sources 195(11):3655–3660. https://doi.org/10.1016/J.JPOWSOUR.2009.12.034

    Article  CAS  Google Scholar 

  99. Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473. https://doi.org/10.1021/ACS.CHEMREV.7B00115

    Article  CAS  Google Scholar 

  100. Chen Y et al (2021) A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem 59:83–99. https://doi.org/10.1016/J.JECHEM.2020.10.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Computer Aided Engineering for Batteries (CAEBAT) project of the Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, US Department of Energy under contact number WBS1.1.2.406. The research was performed using computational resources sponsored by the Department of Energy’s Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory. Contributions made from current and previous members of the Electrochemical Energy Storage Group at NREL are acknowledged.

The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shriram Santhanagopalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J., Mallarapu, A., Santhanagopalan, S. (2023). Abuse Response of Batteries Subjected to Mechanical Impact. In: Santhanagopalan, S. (eds) Computer Aided Engineering of Batteries. Modern Aspects of Electrochemistry, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-031-17607-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17607-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17606-7

  • Online ISBN: 978-3-031-17607-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics