Skip to main content

Anti-cytokine Therapy in Critical Illness: Is There a Role?

  • Chapter
  • First Online:
Management of Dysregulated Immune Response in the Critically Ill

Part of the book series: Lessons from the ICU ((LEICU))

  • 591 Accesses

Abstract

The acute innate immune response to infection and tissue trauma is affected and regulated through the release of a large number of inducible proteins known as cytokines. Normally present in the circulation at very low levels, cytokine expression and release are induced in response to danger signals detected by pattern recognition receptors on innate immune cells. The dynamic nature of the cytokine response and the ease with which it can be shown to impact survival in animal models of acute inflammation have made these mediators attractive candidates for the targeted therapy of sepsis. The results of their manipulation in critical illness have been disappointing, though many have emerged as promising treatments for chronic inflammatory disorders such as rheumatoid arthritis. This chapter reviews the biology of the cytokine response and its potential as a therapeutic target. Building on insights derived from studies of cytokine manipulation in COVID-19, it discusses the reasons for an apparent lack of efficacy in sepsis and identifies priorities to overcome these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The REMAP-CAP Investigators. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med. 2021;384:1491–502.

    Google Scholar 

  2. Tata JR. One hundred years of hormones. EMBO Rep. 2005;6:490–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Eknoyan G. Emergence of the concept of endocrine function and endocrinology. Adv Chronic Kidney Dis. 2004;11:371–6.

    PubMed  Google Scholar 

  4. Bahadoran Z, Mirmiran P, Azizi F, Ghasemi A. A brief history of modern endocrinology and definitions of a true hormone. Endocr Metab Immune Disord Drug Targets. 2019;19:1116–21.

    CAS  PubMed  Google Scholar 

  5. Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther. 1994;64:529–64.

    CAS  PubMed  Google Scholar 

  6. Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection—possibilities for cancer treatment. Anticancer Drugs. 2016;27:269–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Atkins E, Wood WBJ. Studies on the pathogenesis of fever. II. Identification of an endogenous pyrogen in the blood stream following the injection of typhoid vaccine. J Exp Med. 1955;102:499–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dinarello CA. Interleukin-1. Rev Infect Dis. 1984;6:51–95.

    CAS  PubMed  Google Scholar 

  10. Loda M, et al. Induction of hepatic protein synthesis by a peptide in blood plasma of patients with sepsis and trauma. Surgery. 1984;96:204–13.

    CAS  PubMed  Google Scholar 

  11. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281:8–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carswell EA, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72:3666–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beutler B, Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med. 1987;316:379–85.

    CAS  PubMed  Google Scholar 

  14. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985;229:869–71.

    CAS  PubMed  Google Scholar 

  15. Lorente JA, Marshall JC. Neutralization of tumor necrosis factor (TNF) in pre-clinical models of sepsis. Shock. 2005;24:107–19.

    CAS  PubMed  Google Scholar 

  16. Almutairi KB, Nossent JC, Preen DB, Keen HI, Inderjeeth CA. The prevalence of rheumatoid arthritis: a systematic review of population-based studies. J Rheumatol. 2021;48:669–76.

    PubMed  Google Scholar 

  17. Fraenkel L, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2021;73:924–39.

    PubMed  Google Scholar 

  18. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol. 2002;2:364–71.

    CAS  PubMed  Google Scholar 

  19. Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford). 2019;58:i17–26.

    CAS  PubMed  Google Scholar 

  20. Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. N Engl J Med. 2016;374:2563–74.

    PubMed  Google Scholar 

  21. Dubash S, Bridgewood C, McGonagle D, Marzo-Ortega H. The advent of IL-17A blockade in ankylosing spondylitis: secukinumab, ixekizumab and beyond. Expert Rev Clin Immunol. 2019;15:123–34.

    CAS  PubMed  Google Scholar 

  22. Erichsen CY, Jensen P, Kofoed K. Biologic therapies targeting the interleukin (IL)-23/IL-17 immune axis for the treatment of moderate-to-severe plaque psoriasis: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2020;34:30–8.

    CAS  PubMed  Google Scholar 

  23. Mockel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): structure, functions, autoimmunity and clinical implications in systemic lupus erythematosus (SLE). Autoimmun Rev. 2021;20:102736.

    PubMed  Google Scholar 

  24. Townsend CM, et al. Adalimumab for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev. 2020;5:CD012877.

    PubMed  Google Scholar 

  25. Singh S, et al. Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn’s disease: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2021;6:1002–14.

    PubMed  PubMed Central  Google Scholar 

  26. Ben-Horin S, et al. Efficacy of biologic drugs in short-duration versus long-duration inflammatory bowel disease: a systematic review and an individual-patient data meta-analysis of randomized controlled trials. Gastroenterology. 2022;162(2):482–94.

    CAS  PubMed  Google Scholar 

  27. Raine T, Verstockt B, De Cruz P. Immune therapies in ulcerative colitis: are we beyond anti-TNF yet? Lancet Gastroenterol Hepatol. 2020;5:794–6.

    PubMed  Google Scholar 

  28. van Horssen R, Ten Hagen TL, Eggermont AM. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist. 2006;11:397–408.

    PubMed  Google Scholar 

  29. Ridker PM. Anticytokine agents: targeting interleukin signaling pathways for the treatment of atherothrombosis. Circ Res. 2019;124:437–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ingram JR. Interventions for hidradenitis suppurativa: updated summary of an original cochrane review. JAMA Dermatol. 2017;153:458–9.

    PubMed  Google Scholar 

  31. Brusselle GG, Koppelman GH. Biologic therapies for severe asthma. N Engl J Med. 2022;386:157–71.

    CAS  PubMed  Google Scholar 

  32. Marshall JC, et al. Pre-clinical models of sepsis: what can they tell us? Shock. 2005;24:107–19.

    PubMed  Google Scholar 

  33. Hinshaw LB, et al. Survival of primates in LD100 septic shock following therapy with antibody to tumor necrosis factor (TNF alpha). Circ Shock. 1990;30:279–92.

    CAS  PubMed  Google Scholar 

  34. Tracey KJ, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987;330:662–4.

    CAS  PubMed  Google Scholar 

  35. The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N Engl J Med. 2021;384:693–704.

    Google Scholar 

  36. Writing Committee for the REMAP-CAP Investigators, et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA. 2020;324(13):1317–29.

    Google Scholar 

  37. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324(13):1330–41.

    Google Scholar 

  38. Kyriazopoulou E, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med. 2021;27:1752–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kokkotis G, et al. Systematic review with meta-analysis: COVID-19 outcomes in patients receiving anti-TNF treatments. Aliment Pharmacol Ther. 2022;55:154–67.

    CAS  PubMed  Google Scholar 

  40. Kalil AC, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N Engl J Med. 2021;384:795–807.

    CAS  PubMed  Google Scholar 

  41. Guimaraes PO, et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;385:406–15.

    CAS  PubMed  Google Scholar 

  42. The ATTACC, ACTIV-4a, and REMAP-CAP Investigators, et al. Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. N Engl J Med. 2021;385:790–802.

    Google Scholar 

  43. The REMAP-CAP, ACTIV-4a, and ATTACC Investigators, et al. Therapeutic anticoagulation with heparin in critically ill patients with Covid-19. N Engl J Med. 2021;385:777–89.

    Google Scholar 

  44. Ziegler EJ, et al. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med. 1982;307:1225–30.

    CAS  PubMed  Google Scholar 

  45. Ziegler EJ, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. N Engl J Med. 1991;324:429–36.

    CAS  PubMed  Google Scholar 

  46. McCloskey RV, et al. Treatment of septic shock with human monoclonal antibody HA-1A. Ann Intern Med. 1994;121:1–5.

    CAS  PubMed  Google Scholar 

  47. Levin M, et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. Lancet. 2000;356:961–7.

    CAS  PubMed  Google Scholar 

  48. Axtelle T, Pribble J. IC14, a CD14 specific monoclonal antibody, is a potential treatment for patients with severe sepsis. J Endotoxin Res. 2001;7:310–4.

    CAS  PubMed  Google Scholar 

  49. Opal SM, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013;309:1154–62.

    CAS  PubMed  Google Scholar 

  50. Dellinger RP, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES randomized clinical trial. JAMA. 2018;320:1455–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Panacek EA, et al. Efficacy and safety of the monoclonal anti-TNF antibody F(ab')2 fragment in patients with severe sepsis stratified by IL-6 level. Crit Care Med. 2004;32:2173–82.

    CAS  PubMed  Google Scholar 

  52. Fisher, C.J., Jr. et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. N Engl J Med 334, 1697–1702 (1996).

    Google Scholar 

  53. Qiu P, et al. Antitumor necrosis factor therapy is associated with improved survival in clinical sepsis trials: a meta-analysis. Crit Care Med. 2013;41:2419–29.

    CAS  PubMed  Google Scholar 

  54. Marshall JC. Such stuff as dreams are made on: mediator-targeted therapy in sepsis. Nat Rev Drug Discov. 2003;2:391–405.

    CAS  PubMed  Google Scholar 

  55. Marshall JC. Inflammation, coagulopathy, and the pathogenesis of the multiple organ dysfunction syndrome. Crit Care Med. 2001;29(Suppl):S106.

    Google Scholar 

  56. Bernard GR, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.

    CAS  PubMed  Google Scholar 

  57. Ranieri VM, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366:2055–64.

    CAS  PubMed  Google Scholar 

  58. Warren BL, et al. High-dose antithrombin III in severe sepsis: a randomized, controlled trial. JAMA. 2001;286:1869–78.

    CAS  PubMed  Google Scholar 

  59. Abraham E, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003;290:238–47.

    CAS  PubMed  Google Scholar 

  60. Vincent JL, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. JAMA. 2019;321:1993–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.

    PubMed  Google Scholar 

  62. Singer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Marshall JC, et al. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. J Infect Dis. 2004;190:527–34.

    CAS  PubMed  Google Scholar 

  64. Sorenson TI, Nielsen GG, Andersen PK, Teasdale PW. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med. 1988;318:727–32.

    Google Scholar 

  65. Khor CC, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet. 2007;39:523–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77:171–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sookhai S, et al. A novel therapeutic strategy for attenuating neutrophil-mediated lung injury in vivo. Ann Surg. 2002;235:285–91.

    PubMed  PubMed Central  Google Scholar 

  68. Green SJ, et al. Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett. 1994;43:87–94.

    CAS  PubMed  Google Scholar 

  69. Bone RC, et al. Sepsis syndrome: a valid clinical entity. Crit Care Med. 1989;17:389–93.

    CAS  PubMed  Google Scholar 

  70. Bone RC, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–55.

    CAS  PubMed  Google Scholar 

  71. Petros AJ, Marshall JC, van Saene HKF. Is mortality an appropriate endpoint for clinical trials in critical illness? Lancet. 1995;345:369–71.

    CAS  PubMed  Google Scholar 

  72. Lopez A, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32:21–30.

    CAS  PubMed  Google Scholar 

  73. Abraham E, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. Lancet. 1998;351:929–33.

    CAS  PubMed  Google Scholar 

  74. Gospodarowicz M, et al. History and international developments in cancer staging. Cancer Prev Control. 1998;2:262–8.

    CAS  PubMed  Google Scholar 

  75. Levy MM, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;34:1250–6.

    Google Scholar 

  76. Marshall JC. The PIRO (Predisposition, Insult, Response, Organ Dysfunction) model: towards a staging system for acute illness. Virulence. 2014;5:27–5.

    PubMed  Google Scholar 

  77. Shakoory B, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med. 2016;44:275–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Calfee CS, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6:691–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Marshall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marshall, J.C. (2023). Anti-cytokine Therapy in Critical Illness: Is There a Role?. In: Molnar, Z., Ostermann, M., Shankar-Hari, M. (eds) Management of Dysregulated Immune Response in the Critically Ill. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-031-17572-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17572-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17571-8

  • Online ISBN: 978-3-031-17572-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics